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ABSTRACT

Tihwe theoas investipales the meastrement and analycis of comples computer systems
A e devels of hardware archilecture and operating system herned devdnn, Doth {heee

Icwele provide the user with a <ot of instructions: the wachme inalruct:ions and the
e -, Thet

re
openraling ~yslem kernel functions, Qur vicewpoint 15 alwaye that of the designers

allempling to study the usage of these abetract instruclions by neasurimg the
Y

behavior of actual programs, We take the samc approach for the study of the effecls
of multiprocessing al thece levels, N

For the hardware archilect, the variabilily in the workload has alwave bheen a
diﬂi(-‘ull design problem,. It scems intuilively dear thal different application areas (
scicntific, business, process control ) present different workloads to a processor, The
impotlant questions faced by the designer in this rezpedd are: are the apptication
arcas differant at the lowest level of data structure mamipulations ie. the in<truciion
mix level? I so, are they sufficiently different o juslify a specialized processor for
each applicalion area? bow much perfarmance improvement can be obtained by such
specialized processors across all the programs in a given area? We apply statistical
experimental design techniques 1o quantify the variance in the instruction mix duec to
the various faclors in order 10 answer these questions. Qur resulls indicate thal the
variance due lo diffierent programs within an area is comparable to the variance acreds
appiit ation arcas themaclves. This shows that the differences across the application

areas are nol significant at the instruction nix level This s a consequence of the fact

thal the machine instruclions operate on bile and werds whereas the cperatinns on




hphier Ievel data structares such as veclors, process control bincke, queues and lints
differentiate belween the applicalion arcas,

In the case of mulliprocessers, the study of the centention for <hared resources
amen proceasors is very imporlant, At the hardware archilecture tevel, the contention
occurs for the shared memory and shared data paths. This prablem has been studied
carlicr by others ( [BHANY3), [MCCR73], [BASKZ6)) using analylical models. We have
allowpled to mrasore lhe memery contention for Cmmap - the Carnegic-Mallon
University™s i miniprocessor. Qur study  was hampered by the lack of high
rezobilion measurement lools..

The measwrement of the workioad and ils variation for the aperating syslem kernel
decipn level is complicaled by the fact thal cach operaling syvalem hernel has ite own
sel of primitive functions and comparisons across different aperating syclems is nol
possible with our current understanding of operating systems. We have thercfore
cecided {0 ;iefcr {the gencral sfudy of {his problem. Howewver, onec aspect of the
rroblem thal can be altacked is the problem of software lockout in a mulliprocessor
coerating syslom,

In order to maintain integrity in a multiprocessor syslem, cerlair sharcd dala
¢ hjects (such as the list of runnable processes or the list of free blocks of memery)
ave to be accessed by only one processor at a time giving rise {0 software fochkoul.
Vihen lwo or more processers allempl 10 access the same shared dala objed at the
s ame {ime, only one of them can access it and others have to wail. The mechanism
ved for such mulual exclusion is called a lock. The time fest by a processor while
watting for a shared object {o become free can become a performance botllencck for

rwliprocessors. A hardware monilor was used {o measure the contention occurirg in




Hydra, the operatieg syslem for Commp, The measurements show thal while in the
operaling syztem, shout 400 inclructions are exceuled belween cucccasive locks and
cach locked execulion {akes about 100 instructions. However, the shared data of Hydra
i5 organized into rnough separate objects thal very ditlle tme was lost due 1o
contention for the-e objects. To the best of ouwr knowledpe an experime ntal
invectioation of thie prolxdem was not possible in the past, A <imple central <erver
quevcing syctem wan need 1o model the locking behavior and 1o predict the ime I
due to contention. The prediclions were validaled agairat the actual measurements and
the validated model was then used to predict lime lost due {o contention in larger
systems.  Our med. b predicts thal lime Jost due 1o software tockout will notl be
significant for Hydri cven when the number of processors in Canmp is increcased {o 48,
As other mulliproce : aee opcrating systems are designed, The medel developed in our
investigation can be used as a guide for the study of their software lockout problems.
The space of pe: formance paramelers at various system levels is examined and
strengths of the « aricus measurement tools are discussed wilth respect to the
parameters, We alse e ify the hardware monitor as the primary measurement tool at
the fevels of hardwere archilecture and operating system kernel design. Because the
hardware monilor i. a versalile tool applicable 1o olher levels as well, we h_ave
investigated many oilner applications of our hardware menitor, but to lesser depths. A

survey of hardware i-ac~iloring lechniques is also presented and suggestions are made

regarding the design of “uture monilors.
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A NOTE ON TERMINCLOGY

We have used The tcrminology introduced by Bell and Newell [BELL7)] o describe
compuler structures throughout this disseriation. We list below the specific terms used
along wilh their meaning:

1ISP: The logizal processor defined by its instruchion set, as opposed o ils
physical implementation. The ISP of a processor includes such aspects as
instruction  formats, register  structure, inclruction.  interpretation
algorithms, address calculation, data types and their representation,

PMS: This is the Processer, Momory and Swilch nolation develeped by Bell and
Newell for describing compuler structures,

{.mon: This is the PMS name of our hardware manilor. It stands for a control
clcment (K) for menitoring purposes hence Kinonitor) or Kanon for shord,

Host or P.host: This is the processor under measurement. The hast computer
has o be a PDPP-1) in the current design of Kinon, Kmnon is connected to
the Unibus of the host processor.

Supervisor or P.sup: This is the processor controtling the Kmon, U «ets up
recccters in Kannn, starls il and finally processes the data generated by
Karo=. The supervisory processor is also constrained lo be a PDP-11 in

the current design of K.mon,




Hardware Architectine: This is the parl of hardware design which deals with the
ISP and il implementation.

Operating Sysiem Ken;elz This is the fevel in lhe operating syslom where ils
mosl primtlive operations are defined. A fernel indudes the prindive
synchronization wechanism, the protechion mechamam, the low lovel
recource allocalion and scheduling functions.

Soflware lochout ( also called software contention): This is a phenomenon arising
oul of the need for mulcally exclusive accesses to shared data structures
in a mulliprocessor operating system. The software leckout resulle in a

loss of of time while executing cerlain aperating system functions.
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1. Introduction

1.1. The Neced for Performance Evaluation

The coffective mcasurnﬁmnt of computer sye.lem.f. 15 an essential part of the
me asurement, modelling and optimiration cycle of computer systems. Computer sysiems
Lave evolved into very complex structures, often consisting of many processing units,
many 1/0 channels and a wide variely of high performance 1/0 devices. On the
applicalions side, the computers are no longer operated by one programmer at a time
execuling a single small program. Today’s computers are required to salisfy a \';'idc
array of demands from many users simullaneously. The users alsc evpect the compuler
systems 1o obey (often conflicting) constraints of fast response and high component
utilization, high throughpul and low software overhead. Il is no accident thal many
current computer systemn are among the most complex man-made objects.

The increase in complexity and size is unfortunalely not matched by an
understanding of the dynamic behavior of such a system. This has given rise to the
science ( or art) nf computer performance measurement and evalualion, The neced lo
gain an understanding of the dynamic behavior of a compuler syslem is foll by all
compuler professionals, whelher engaged in design of new hardware and software
systems or in Wriiing cfficient applicalions programs or in running a large installation,
Lucas [LUCAZ1] has altempled lo parlition the need for performance measurement iv;to
three areas: design, purchase and oplimization studics.

In the area of design and development of new hardware and software systoms,
mrf.ar.urement plays a vilal role in guiding the designers (o make oplimal decitions with

respect to design trade-offs, Moreover, many of the designs have to rety on analylical




or simulation mwoedels because no operational insiance of such cyctems exists, Here,
mr asuremente are needed 10 obitain parameters for such medels and to verify the
predictions of the models,

The decisions regarding purchase or leasing of a hardware or coflware unil, can
also benefil from performance measurcment. The preblem here is lo compare the
performance of the unil or sysfem under consideration with some standard or wilh
oiht;r syslema, Since operational systerma are availeble, w contrast with the deaen
problem, direct measurement of paramelers of interest is possible.

The third area of applicalion of performance measurement is concerned with
optimizing the operations of a specific compuler system. The measurements are used
to predict ( and observe) the effects of emall hardware or soitware chanacs. The
changes incdnde nsing a faster (or slower) central processer, acguiring faster or larper
secondary storage devices, addilion of primary mewmory, allering the allocation of
devices 1o channels, altering the processor scheduling alporithm, allering the paging
and other algorilhms, The reason such oplimizalion decisions cannol he made by the
manufacturer ance and for all is thal the oplimum choice depends on the workload
expericnced al an installation. The measurements have to he performed continuously
and the sysziem has lo be altered (perhaps dynamicaily) {o suit the changes in the
workload.

We have chosen to parlilioh the performance evaluatici into levels such that a level
is characterized by the number of machine cycles required for a typical operation at
that level. N is advantageous fo do so since the performance paramelers,
me asurement lools and the applicalions of the evaluation are different from one such

level to anolher. The lowestl level is the hardware cngincering level where the




(a3 ]

orerctions invelve one or a few machine cydes. The olher levels i the ingreaning
order are the hardware archilecture fevel, the operating cyclem kernet decipn levcl,
the - yolems programinmg level, the applications propramming level and finally the
broao mefallation wananoment {evel, These dcwvcle are <hiscusced in more detat n the
next chapter. It 1s not practical o atlemp! to mvestigats the performance anpects at all
these Iovels al once «ince the parameters and the lools required are wadely different,
Thie discertation, therefore focuses on the study of the performance measurement and

analyas at the hardware archilecture and the operating syclem kernel dedign levels,

1.2. Qverview of the Dissertation

* Thes chapler mtroduccs the area of computer performance mcasurcinent and

evaluabion and discusses s apphications, The next chapler prewents the perfarmance

parymelers al the various syalem fevels and {he measurement tools agplicable to thene
levete. [t also gives the molivation behind the rescarch presented i the resl of the
dissertation. Chapter-3 gives a brief descryplion of owr hardware mentor Kanon and
discunscn s atrenglhs and weaknesses as they relate {o the measmremenis af the
hardware archecture and the operating system kernel design levels, Chapler 4
desorthen an in-depth experiment conducted to quantify the varation in the different
applicatinn areas in terms of Nmir‘usas’,e of the PDP-]1 inctruction set. The complele
statichical decign used to quantify the variation is presented. Chapler D focuses on
another major experiment relating to the operating system kernel design level for a
mulliprocensor system. The coftware contention arising due 1o nndually excluane
acccanes to shared data structures is studicd for Hydra - the operatiny syslem hernel

for C.mmp (the Carncgie-Mallon mulli-mini processor system). A siple central scror




medel e precented to siudy {he contention. The nedel o vabidated  asansat the

e antremente and then vned to predict the ockoud Sor lasger Conmp ithe stractures,
Chapier 6 precents the varnous experiments performed vanes ow hardware wondor of
olher aycdew dovels, Some eyperimente are winar but come can become a major

rescach project, Chapter 7 scommarizes the dissertation vadh cugpestions for future

resceaveh.

Appendix A presents a survey of hardware memloring lechnigues. A comparison of

in precenled along many

exstinvg commercial and resecarch  hardware wenlors

dimenmens, Trends i the hardware monitor develepment are idenbificd, Appendiv 8

prves the complele instruction ey data wineh intlsdes o «horl descrviphion of the

measined proarams. Appendiccs C through F opresent the onlput, of o oiher

cxperiments in detaid,




2.  Performance Parameters and Measurement Tools

Chapler 1 discusses the voals of performance evaluation and measurerment.  To

achieve any of these goals, one has to perform experiments to measure any different

quantilice of interect, The purpose of this chapter v 1o idenbily the performance.

pararmcters of interest and {o describe the varicus measurerent lools in the context of
these parameters. Even though our main interest lics in the areas of hardware
architecture and operating syslem kernel design, we will present the parameters and
{ools applicable 1o other areas as well.

The liferature on performance cvaluation and measurement containe many instances
of mr asurements of specific parameters. I is difficull | if ncl imposaible to enutonrate

gvery parancter measured so far. Morcover, the architectunes of existiny hardware/

software systems and the emerging technolegics give rise to interest in many

parineters, For evample, i 15 oflen no longer meaninaful 1o wmeasure the elapued e
{o evecule a program, bul lhis was an inerezling parameler before mulliprogramming
was miroduced. Similarly, the advent of limesharing has generaled interest in the
response lime measurements; and the emergence of mulli-processors has piven rise an
{o intarest in paramelers like memery contention and cffcclive speed-up factor. Any
list of performance parameiers thercfore stands to become obsolete as {nchnology
evoluas. Just as performance parameiers depend on the technolesy, the wvalues
measmed for these paramecters are also dependent on lechnology (that s, the
characteristics of the components used to construct the systems and the way in which
theso companents are intorconnected ) and the workload present on the machine when
the measuremente are made. These farts should be kept in mind winle studying the

porformance paramelers.




e L

2.1. Classificalion of Perfermance Parameters
Various rescarchers have atlempled to dassify the performence parameters.
Svohodova [SVOE76h:] lists four different aspects of evalualion paramelors-

1. Quantily of work a sy<lem can handle.

2. ability of a cystem lo (ulfil the users” needs ( qualily of service)
3. utiliralion of the system’s hardware and sofiware components
‘ 4. Inlernal aperalion and characteristics of the system’s hardware and software

companents { underlying faclors)

The first two arg imcasures thal describe a syslem as it manifests Hself lo an exlernal
observer. The last two describe the internal behavior of the system,

Fuller [STON?5] notes that performance measures fall into two fundamental clasaes:
response fime measurements and Lthroughpul measurements, Measures in the class of
response time include the fime taken o respond lo users’ commands, time taken o
scrvice a disk request and turn-around time in a balch installation. The ¢lase of
throughpul measures includes the number of jobs excculed per day and also the
utilizalion of the varinus components.

We have chosen to classily the performance parameters as belonaing lo varicus
level. in a compuder syslem, This dassification is advantagecus because we belicve

thal many measurement 1ools can best be classificd as “belonging” 1o the same levels.

The idea of considering the performance paramelers as belonging to different levels is
nol new. Kolanko [KOLAZ7] describes a scheme of considering levels of abeolract

machines, cach compancd of slates that can be abstracted from many slales from the




next lowar level, A ofale lrancilion al level bl o «<date drantition can be a
meannement paramcier) reflecds any one of weveral tranaidions at level h, Svobodova
(SVOITGHh] condiders the register trancfer, the 1SP, the roftware <cupport and the PG
as e avmaful levels {or dassification of performance paramelers, Qur ctansificotion (
see fivure 2.1) s similar, excepl that it considers the levels alona the ‘machinge cycles’
aie. We have alho attempled to characlerize the interest of varicus computer
profecadinnals alone fhe <ame axis. Admittedly, such a dassificalion is ralher lcouse, bl
it dees point oul how different computer professionals view  the performance

paramelers and measurement lools.
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2.2. Performence Measurement Tools

Figure 2.1 points out that there are a varicly of performance measurement {ools |
with each level having a prefered measurement tool. For an inslallalion wmanager, the
agoals of performance measurement are to ad the purchase of new components or
syslems and lo direct the oplimizalion of existing resources. To achieve these goals,
two main measurements have 1o be performed: the workload al the installation has to
be characterized and {he utilization of various hardware componente necds o be
measured. The system accounting log gives the resources consumed by individual user
“jobs and so il can be used for workload characterization. Moreover, with a more

sophisticated log

bl )

one can get the resource ulilizalion on a per-sccond basis. The
me asurement of overlap of varinus hardware ('omponent_s however, has to be obtained
using a hardware monitor in present conputer systems.

The reason a soflware monilor is mest applicable al the applicalions and sysicms
pi-ogramming leveis is {wo-fold. Firsl, measurements at {hesc levels neecd conaiderable
amount of struclured informalion in the form of varicus syuslem queuces, job lal.)les. and
the association of high level language stalements with actual instruchions being
cxecuted. Such informalion is most easily oblained by introducing measurement code
in the appropriate rowlincs.  Sccond, the primitives at these levels lake many
thousands of machine cycles to cxecute, so the overhead caused by inserting
me asurement code is not prohibitive.

As one proceeds 1o lower levels, the overhead cauvsed by software moniloring
becomes sipnificant and moreover, the high level informstion needed lo pather or

interpret the measurements can usually be compressed into a few bits (c.a. whetlher a




coertan user is excculing, operating system or user execulion). It is thercfore natural
fo use a hybrid monitor where most of the measurements are performed using the
hardware monitor, bul the <oftware on the measured syslem assists by zupplyive the
requied hiph tevel informalion,

Firally, when one 1s con.sidcrms: events laking place over a few wachine cycles, the
only tool thal can be uscd is a hardware monitor. The machine states required lo be
menilored o lius level are gencrally nol accessible via software. Measurements at the
oyte level and below are usually conducted by a hardware mamntenance encineer and
they are unally pevformed for the purpose of diae Jsis rather than performance
cvaluation. We will not be concerned with measurements at this level

Th~ need for measurements at the hardware bits level gave rise to the hardware
moenitors. In fact, most of the early sludies involving hardware monitors were
reclricted a this level [ASCHT Y, BORD?Z ), IBME3, PLIDDY2, TARE? 2] Clever ;.vny'.-, have
heen devised however, to make a hardware menitor uscful al upper levels. A simple
address compatator can De used in some syslems o idenlify that a particular user s
cxcculing or thal a parlicular operating system function is being performed. A numiber
of performance paramelers applicable to higher system levels can be measured using a
hardware monitor without allering lhe software on the measured syslem at all (e.g. the
averiage CPU utdizalion, the execution profile of the operating system, average think
time and compule time). When the software on the measured <yslem is maedificd to
actively assist the hardware monitor, one can perform measurements on the activily of
a particular neer or take into account the effecls of proaram overls, s when acquiring
an m:ecuiio-w profile or a routine trace. Such a hybrid easurement lechnique has been

found lo be quile useful { SVOB?6b, HUGH?4, COLL76, SEBA7ZA]
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Foen thoush ficure 2.1 slales that the most applicable ool al the level of the

inclallation manager and applicalions programmer is a soflware menilar, we find that

ol commercial hardware monitors, by virlue of the soflware supplicd with them are

gcarcd towards these upper levels, Apart from there being more marhet at these

levels, we see the following reasons:

1.

N

Paramelers at upper levels are compoazed of paramelers at lower levels and
theze can be monitored using a hardware monitor, The device overlap and
device utilization cerlainly need a hardware monitor in current syslams,
Mareover, paramelers like the averane rewponse time actually concist of lower
level paramelers like lhe execulion of command inlerpreler, device iniliation to
bring in a new program il required, wail for lhe device to compdele the request
and excculion of tlhe new program. Each of lhese can be measured using a
hybrid or a hardware monitor. Even when such measurements are unable to
give a conarele number for the average response hime, they indicate why the
observed response lime is targe, so correclive action can be taken. In short,
lower lIevel measurements can hot only yield upper fevel parameters, but in
some (ases can provide valuable insight,

Any soltware monitor necessarily implics some medification of existing the
operating system , systems programs or user prozrams { a sampling soflware
monilor is an exceplion, bul its applicability and accuracy is limited il the
sampling rate is kepl low (o reduce overhcad). Such a medification perfurbs the
sysfem and more imporfantly, can become a source of errors. This gives rise to
the reluctance in gathering information with a soflware momitor if the same can

be ohtained using a hardware monitor.
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3. A hardware monifor, once set up, can give quich anawers to many quectiona. or
example, paramelers like the averape tune taken to exccute a cortain rouline or
the distribution of use of different supervisory wervice calls and the time tahen

.10 complete cach call can be oblamed wilhout oo much cfforl. Cquivalent
measinement in coftware would require more time  and o more  detailed

knowledpe of the software under consideralion,

=.3. Performence Parometers Constituling Our Study

We are interested in the performance measurement and evaliation af the hadware
erchifecture and operating system kernel desipn fevels, Thewe fields are expanding
rapidly with the advent of technology and it is therefore nol appropriate to allemp! lo
s‘\udy all aspects of performance refaled 1o these arcas in deplh. We have studicd
1 any paramelers of interest in these areas and have exlended our sludy fo include
r utliprocessor systems as well. OQur viewpoint s always thal of the decigners
< lempling to «tudy the hardware archilecture and the operating syalem hernel by

rcasuring lhe behavior of the existing systems under actual ucer programs. Figure 2.2

¢ splays the major parameters constifuting our study.




Figure 2.2

Hardware avchitecture
level
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Operating syslom
kerne b design level

Far the hardware

diffictlt  design problem, It is infuilively clear that differenl application arcas (
scieniific, business, process conirol ) present diflerent workloads to a proccssor. The
impor{ant questions faced by the designer in this respeci are: are the apphication
arcas differenl at ihe lowest level of data structure manipulations ic. the metruction
mix level? 1f so, are they sufficiently different 1o justily o specialized processor for
cach application arpa? How mich performance improvement can be obtained by -uch
specialized processors across all the programs in a given area? We apply statiutical

exper mental design techniques 10 quantify the variance i the instruction mix due 1o

the . arious factors in

12
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Uniprocessor syslems:
hehavior of wystems
and workload
characterization

The instruction mix
and quantification of ils
variabilily with respecl
io applicalion areas
(chapter 4)

Study of syslem hehavior

and workload characterization
is made difficull by non-
uniformity of primitive
funclions across

operating syslems

architect, the variability in the workload has always becn a

order 19 answer these questions.

Performance Parameters Conatituting our Study

Mulliprocassor syslema:

- contention duc 1o

shared resources

Mamory contention
in C.mmp
(chapter 6)

Software contrntion
in Hydra for a
non-thteractive
workload

(chapler H)

N L
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The measurement of the workload and ils variation {or the operating system kernel

design level is complicaled by the fact {hal cach operaling sysiom kernel has its own

sel of primilive functions and comparisons across different operating systems is not

possible with our currenl understanding of operating systems. We will therefore not

sludy paramelers at this level for uniprocessors.

In the case ot mulliprocessors, the study of the contention for shared.resources

amonz processors is very imporfant. At the hardware architecture ievely the contention

| occurs for the shared memcry and shared data paths if any. This problem has been

studied earlicr by cthers ( [BHAN?3), [MCCR73]}, {BASKT6]) using analylical models. We
have allempled to measure (he memory contention for C.immp - the Carncgic-Mailon
Universily’s mulli miniprocessor. Our sfudy was hampered by the lack of high

resolulion measurement tools. However, the contention problem al the kernel de<ign

level was attacked successtully. The contention arises because in order o maintain

o
N AT P 913 EA I P TG

integrily in a mulliprocessor system, certain shared data objects (such as the list of

runnable procecsses or the list of free blocks of memory) have to he accessed by only §
:
onc processor at a time. When lwo or more processors attempl 10 access the same
shared data object at lhe same time, only one of them can access it and olhers have 1o |
wait. The mechanism used for such mutual exclusion is called a lock. The lime lost by
a processor while wailing for a shared object lo become free can become a
4

performance bolllencchk for mulliprocessors. A hardware monilor was uscd 10 measure
. the locking behavior and the contenlion occuring in Hydra, the operating system for
C.mmp. To the best of our knowledge an experimental investipation of this problem

was not possible in the past. Qur study of this important performance parameter

‘; should guide the study of this problem in future mulli-processor operating systems,

T o 0 0 L - om0 it DA Al o AR B SR V5 o e BT e ey g s b
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It is cddecar from the discussion in the previous section thal a hardware monitor is the
most appropriate tool to investipate these parameters. But a hardware monitor 15 a
versalile fonl which can also be applied o performance studies of olher system levels,
We  have therefore expended some efforl in studying the hardware noniloring
techniques in general. The next chapter briefly describes our hardware monilor Kanen

L]
and in chapter 6 we cxamine how il has been used for me surements relating o the

differenl system levels.




i amrrme o

3. Description of Kunon

3.1. Introduction

K.mon is a memery bus monitor {for the PDP-1} family of computers capable of
moniloring every cycle taking place on the PDP-11 Unibus [DEC71]). Since tost
computer syslem components and peripherals on a PDP-11 communicale with each
olher via the Unibus, the Unibus is a rich source of informalion regarding cevery
activily laking place in the compuler syslem. In prindple, it is possible 1o recerd
every cycle occuring on {he Unibus and post-process the data ta obtain the required
informmation regarding any activily on the system. Il is however impractical o record
all the cycles at the rate they occur. Moreover, the post-processing program will have
to be very complex to extract the required information from a large Unibus cycle trace.
K.mnn therefore provides very sophisticated event detcclion mechanisms which enable
the 2!!\31;,'5;1 o record only the events of interest thereby simplifying the task of
recording and post-processing. K.mon gives access 1o hardware level performance
information not olherwise available. Moreover, the event detection mechanisin is
capable of oblaining information regarding software performance without the ins;(:rl.ion

.
of software breakpoints.

This chapler is intended fo describe Kmon o a level of detail necessary o
understand the expariments presented in later chapters, The motivalion for ¥.mon and

its drsign philosophy is discussed by Fuller, Swan and Wull {FULL73). For a mere

delailizd descriplion of the operations of Kimon, the reader is referred to [SWANIG].

7 e R Y
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3.2. The Experimental Sctup
.men presents daelf as a passive device on the Umibus of the processor under
meastevaent (1Phost). Another processor { Paup for superasor) is reauired lo control
K.mon and to <tore the data zathered by il Kimen thus cdraddles two Umbuses as
showo in Figure 210 The figuwre shows Kanon connected to Canmp such that boelh Phost
and .cup arc processors on Commp. It should be noled bowever, thal eilther or both of
the procescors may be conventional stand-alone PRP-11%s. In fact, this was the mode
iy which Kanen was used for meel of our c):pnnmr'ntsl.
Al The siznals present on the Phost Unibus are avallable to Kannn. In addition, a et
of 27 probes is provided to monitor signals not availzble on the Umibus. The probes
are currently used to menilor the following signals:
1. the inslraction fetch signal used to distinguish between the instruction felch
cyctes and operand, data or 1/0 cydles,
7. a aignal indicating thal a cydde is inttiated by a processor as againat innbtiated by
an 1/0 device.

3. thiee bils giving the prierily level at which the processor is running

The inpul signals are feated combatorially at the nccurronce of cach Umibus ¢ycle
on F.host 1o detedt events of interest.  Kmon can be programmed 1o record

information such as the addre<s or dala involved in the cyele when an event occurs,

b There ain meay advantages in hoving bath Phaet and Peup to he proceators on Cimmp Homoben the foll
recouring of Cmmp avinhble for Poup ta stare and pont.procenr the doto More impeortostlo, dhe didis obtane

by Kman can he used by the opmating systom for dyniawe tuniny Thie dedbwn ;s capa™alithier of Kien me Ao
erd el hy provichng aroictiones feom the aporaling syntom
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Froure 5.1 Kanon connedlod to Canngp

Mp
(16 X 16 Crosspoint Switch)
Mp
Mp !

Host
Unibus

—_-_%> K.mon <?—%;

Supervisory
Unibus
K10
e |
t
d S ————————aa ” ek

.
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The anfarmation ecrecorded myoa bufler (G0 event. deep) and o then teane feqred Lo the
tam memery of Ponp via o standard interface (DEC DR -13),

P.eup controls the K.mon via five command reoeters which are vaecd for intializ alion,
setling 6f the operating wodes and reporling exceplional condilions, The ¢ vent
detochion and cvent recponse funclions in Kiaon arc compielcly proorammable and
they are determmed by a 65 word speaficalion word wmemery (5WW) winch 1o <ot up

by P.oup prier 1o rumning an experiment. Figure 3.2 chows Ihe block diagram of Kancn

and its relationadup to the two processors.
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3.3. Event Delection

The concept of an event s centrat to all hardware monifors. An event can be loonrly
defined as an occurrence of a parficular state on the syslom under measurement. The
cvenl we are interesied in can also be a combinalion or a scquence of other events,
An cvent can be as simple as an occurrence of an inslruction fetch cycle or as complex
as the occurrence of the first operand felch cycle after exccuting the instruction at a
certan Iocation while execuling a particular user’s program,

Since events can be so complex and since diflerent events need (0 be monitored for
different experiments, the event delection mechanisn is the most important part of a
hardware monitor.  In Kmon, events are delecled al two levels- prinutive and
accumulated. A primitive event can occur on every Unibus cydde. The primitive evenls
are counled until a specificd number of them happen Icading lo an accumulated cvent.
The accumulated events and Kanon's response {o them are discusaed lafer in tins
chapler,

A primitive event is the lowest level of resolution of the Kinon. During ¢ach cydle on
the F.host Unibus, all the available signals are latched. The inpul signals are incpected
simull aneously by faur distinet combinatarial logic unite {0 ditect four distinet prinutive
evenla, The inpul signals are divided into four different groups for the purpose of
~deteding sub-event. which are combined to detect a primitive event, The groups of
inpuf sipnals are;

1. 16 bils of Unibus address

16 bils of Unibus data

N

3. - 16 bils of probe signals or 8 bils each of probe signals and Unibus cycle length

4. 7 bils of control signals:

o — -
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2 bits: Unibue. address bits 17 and 18
2 bils: cycle control signals:
read, read-pavse, wrile and wrile-byte
1 bt cagnal indic ating thal the cycle is
an interrupt request cycle
2 bils: internal ftags used for detecling sequences
The sub-evente are detedded using two functional unitz: comparalors and pallern
detcdlors. A comparator performs a 16 bil unsigned arithraelic comparison betweren ils
mternal comparison vahie register and an exlernal signal group ( usually the 16 bit
Umibue addrecs). The two reaall signals are "Lqual® and ‘GEQ', indicating thal the input
signal 15 cqual lo, or not less than the comparion value register. A pallern detector is
uscd with the data, probe and control signal groups lo detect any particular bit
pattern. I consists of two internal registers: mask and pallern. The wask register is
used to identily the care/ don't care bits of the inpul signal. The resull signal "Match®

ic true iff

Onput signal ~ mask register) = (pattern register A mask register)

3.3.1 Combination of the subevents

Fipure 3.3 displays the arrangement of the comparators and the paltern deteclors,
Far each primitive event there are four sub-evenls -address match/GUQ, data malch,
probes match and controi signals malch. Each of these sub~cvents can be lested for
being true or false or can be ignored in defining the corresponding primitive event.
The right half of the control bils pallern deteclor is used to perform this final
primitive cvent detection funclion using the same pallern and mash regisler concept,
Even though only one event comparator is provided for cach prinutive event, it is
possible to specify a primitive event which incpects the Unibus address for bemg in a

ceriain range by using the GEQ signals from bwo comparators.

naree SRR
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3.3.2 Accumulated Events

s comelimes pecessary {o determine how many times a cortain primive event
happens belween two other events. The event accumulators provide the required
counting function for this purpose. There are fouwr evenl accumulators, one for vach
primitive event. An event accumulator consists of a 16 bil counler and a 16 bil inilial
value register. When a primitive event happens, the counter in its evenl accumulator is
decremented by 1. When the counter reaches zero, an accumulated cvent is said o
have happened. Kimon responds 1o an accumulated event by recording certain
inforinztion as described in the next seclion. In addition, the counter 1n loaded with
the contents of {he infial value register to enable subscquent count-down, hote thal
Ihe inilial value register can be set fo zero causing an accumulated event every hime
the corresponding primitive event happens. Anotht;r commonly uscd value in the inihal
vale register is 216.1 which is the maximum value it can be sct to. The cvent
accunulator counter then overflows infrequently and can be used {o count the number
of limes the corresponding primitive’ event has hat;pened. For cxamplr, suppose the
inilial value register for primitive event 1 is set to ils maxmunn value. By recording the
value of this counter when olher events happen, one can determire how many times
primitive event | happencd helween any other events,

This mechanism is also used for delermining the time clapsed belween two evenla. A
special cvant accumulator is provided for this purpose which counts the occurtences
of a rlock tick. In other words, Lthe primitive event 1or it happens at a conatant rate (

proarammable to be 1, 16, 256 or 4086 microseconds).




3.4. Event Response

When an event is delecled, it is somelimes suffident to just record it occurrence
whereas at other times, il is necessary o record mare information like the address or
the data thal causcd lhe event {o take place. A time stamp and the values of infernal
cvent accumulalor counlers may also be required for later analysis, In the carly
monitors, only summary type information was made available. So the only response to
any event was to increment an internal counter. This is cufficient if only arous averaae
values of the measured quantiiic—s are required. If however, one nceds {o gencrale
hislograms for conslrucling analylical or simulation models, more detalcd information
has lo be oblainn.d by the, hardware monilor.

In Kunon, since there are five event accumulators, any combiralion of up to five
accumulated cvents can happen simultaneously. In some experiments, when two
accumulated events happen simullaneously, different action needs to be taken than if
they bappen separately. Kmon therefore provides for an event responce «pecificalion
word for each of the 3] combinations of the five accumulated evente. When an cvent
is detected, up lo 9 words of information can be obtained. These are: address, daota,
probes, miscellaneous signals, clock value and four words giving the number of times
each of lhe four evente has occured 0 far { i.e. the counters in the four cvent
accumulators). Mareover, 1wo internal flags can be sel or resct to facilitate delecling a
sequence of cvents, If a special {imer mode is set, flag O can be used to enable the
limer. This provides a dynamic event driven mechanisin to slarl and stop the luner.
The miscellancous signals word containg the flag values, the Unibus control signals and

an identification of whith of the accumilated evenl(s) happened,
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In come experiments, the rate at which {he data is gathercd exceeds the rate at
which i con be {ransfernd on the Posup Unibus. Twe buffers cach with 50 cvenls
capacily are used in a double-buffering mode 1o smooth the flow of data 1o P.aup.
When the buffers overflow, Psup is interrupled 1o take the necescary action such as
disabiing event detection or reinilializing ils programs. When an overflow happens no
further data can be gathered untit the buffers hecome free again. Information about

cvents happening during the overflow condition cannot be oblained.

3.5. Strengths and Weaknesses of iK.mon

As we shall see in the {ollowing chaplers, Kimen has been succeesfully used for the
sludy of instruction mixes and the software lockout phenomenon. There are many
ofher measurements for which Kmon is nol an appropriale lonl e, memery swidch
contention or tracing of all cycles laking place in the system. The amount of
méasuremcnt space spanned by a monitor can be looscly defined as the power of the
monitor. Of course, in addilion o power, the casec of use and the casre of attachment to
the measured syszlem are also important parameters of a measurement ool Svobodova
[SVOII?6h] defines monitor power as composed of four components: monitor domain,
monitor rale, input widlh and recording width. For the purpase of discussing Kumen, we
have partitioned Ih(e‘mrmitor power into the following four dimensions:

1. The monitor domain of @ hardware monitor consists of the signais monilored with
the help of probes. In the case of Kmon, the domain consints of the 18 bils of
memery address, the 16 bits of memory dala, § bils of control signals and B bils
of special signals makin;n, a lotal of 44 bils.

2. The monitor rate is the rate with which events can be detected - limited by the

monitor’s probes and logic,




3. The inpul widlth of a monilor is the lotal number of bil comparisons apanet the

mpul sipnals, that can be performed for the purpase of defining events in an
cxperiment. For Kaon, the input width 15 4 primitive events limes the 44 bils of
ils domain, . .

4. The recording rate of a momtor is the maximum possible rate ( in bits/sec) of
suslained oulput 1o the supervisory processor or some wccondary slorage
devico. This dimension of power is a crucial parameter for experiments invelving
{racing. For weasurements involving counting and sampling, the recording rale

can usually be ignored. For Kmon, the recording rate is limiled by the rate at

which it can transfer data on the supervisory processor’s Unibus,

3.5.1 The Monitor Domain

K.mon is a memery bus monilor,.lhal is, most of the signals in its domain are already
avail.e.hlc in onc place an the mewory bus ( the Linibus). Mast commercial monitors are
designed for wonitoring many different computers and <o their domain has lo be
eslablished using high impedance probes 1o ping in the hast computer. This approach
has many drawbacks ( sce [SVOB76b] chapler 5) such as inaccessibilily of pins, danaer
of causing a hardware failure and using a wrong pin. Qur experience has indicated that
moniloring the memory bus is sufficient for most experiments and moreover, in mmost
cascs, the soflware on lhe host compuler does not have {o be modificd al all, A
special monitor register has been proposcd by Hughes ([HUGHTRD) which is contioflable
by P.host soflware using special instructions. This register is menitored by a hardware
monitor to gather the information supplied by the coftware. A memery bus monitor

like K.anen eliminales the need for such a register since any location in the main

'-"“ﬂ
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memery can acl like this rt;gistcr = the hardware monifor needs only {e menitor
acceases 1o this Incalion. Our experience with RSXTIM hooks ( sre scclion 6.2.3)
clearly <hows the advantages of a memory bus monitor,

I is important 1o monilar addrecs lines befare any address mapping is performed,
s0 thal addrecs seen by the monitor is the virtual address pencraied by the program
under measurement and not the absolute memery localion address. Ry doing this, the
me asurerment is nol affecled by any dyonamic relocation of the program. The {act that
all the prripheral devices are controfled via Unibus regsters expands the domain of
K.mon  considerably. Kmon's address comparators can pe used fo menilor the
commands being given to the peripheral devices.,

Many of the measurerments performed by Kmon can be performed in a
microprogrammable host by suitably allering its microcode. We will refer lo this
technique as firmware monitaring in the reet of this chapter. Such a firmware monitor
has a larger domain { r.g. internal régir.ters) bt it lacks the abilily 1o monitor evente
inside the devices and the also fransfers between the devices and memery. I should
be ncled that a hardware or firmware monitor has a very restricled domain compared
to a software monitor. A software monilor essentially has all memery localions which
can be read using an inslruction as parl of its domain. It cannol however monitor
device aclivily unless the CPU is involved in it.

An entirely new problem arises when one is menitoring a mulli-processor or a
nelwork of computers. The domain of a monitor needs to be expanded to include all
the processors in order lo study the operation of the sy«<lem as a whole. Kolanko
[KOLAT7]) and Tesdata repori using a hardware monitor {0 measure a network .of
compuders. Qur experience wilh C.mmp suggests thal hardware moniloring of a mulli-

proccssor faces two main problems:




N
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a. The wondor has to acconmndate a larger domain where different dipnals i the
domain are valid al diflereat time instants

b, The menilor should be able 1o handle o higher inpul rafe

Simdar problems arise when uzing mulli-port memery or when the proccesor uses

ditterenmt buze« for cormmmicating with different memeries.

3.5.2 The Monitor Rale

Ther tact thal Kanen is a memery bus menitor, sels the maximum usetul iemitor rate
to b the rate al which memery cyddes nccor on the hout memery  bus, This
arvanaement forbids any measurements at levels below a memery cyde (e, cache
hits, lenoth of a cycle 2), but it was vsed to simplify the syode onization probiems. The
gh cvent detection ratle of hardware monitors has tradilionally resulled in their uce
for certlain countinﬁ lype weasurements. In fact, since the recording rate of a
hardware memlor is usually low, whenever cvenle are 1o be detected ;;t a high rale,
the mnsi cormmon response to an evenl is incrementing a counter depending on the
cvenl occured. Svobodova [SVOB76D] has propored hardware aids for internal
monitoring. These include counters for counting events commonly counted by a
hardware menilor ( e.g. memery cycles, instructions, channel use and pverlap, various
timers), i processors are de-igned with such internal hardware aids, many experiments
can ke performed using software monitors without the need of an expensive hardware

monitor.,

2 K men hir 1o employ copierate circuila for mearinmg the length of a cyclr




3.5.3 The Input Width
The inpul width of a menilor determines the number of different cvents thal can be '
defincd in an ecxperiment. The input widlh of mon is fixed al 4 times 44 bile, This

number is somewhal inflaled, however, since for mosl cxperivents only a parl of this

total widlh is uscd. Tor manilars which cmploy a manual palch board for gvent

‘ detection, the inpul widlh is variable and each experiment is Typically defined with the
mitnnsum reagoired widih, This approach resulls in a saving of hardware (omponent-. (
e, comparators, bil masks) at the cxpense of the case of use and the time required
to zel up an experiment. The loss of flexibilily reculting {rom the lo<s of a manual
patch board did not rectrict the applicability of Kanen,
For mulli-processors and computer networks, the input width of a menitor has (o be

increased since the number of bils needed for an effective study increases. I was ‘

originally proposcd 1o build onc K.mpn for each processer in Cmmp. Thic <ohttion to

the input width problem cannot usually be adoptaed because of the expense involved.

3.5.4 The Recording Rate

The definition of the recording rate assumes thal the hardware monitor has access
io scome high speed sccondary slorage device either dircctly or through a supervisory
compuler. A high recording rate is highly desirable since it fetls an analysl take full

advantage of the high input rale of the hardware menitor. The experiments performed

using K.mon indicate that the ability to use the hardware wenitor in tracing mede is
very valuable, In the Iracing mode, the monitor acts like a filler allowine selected
Unibus cvedes o be recorded. The traccd data is then post-proceused ta ceneratle

table:. and histoaramn. There is a trend in hardware monitors o perform data
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proce cumg and <lorace operations wiltun e owa hardware, In theae onnitors a opeeind
{racuse mode nends {o be provided.

The recording rate s affccted by many factors. In the hardware wondor iteclf, hiph
wpecd buffers (al leant two) necd 1o be provided <0 bursls of dala can be recorded
vithout any losn. The high speed buflers need 1o be emplied into the mam memcry of
Paup (if one 1 used ) The final slage is storing the dota on a magnetic Lage or a dink,
A botltencclh can be precent at any of thece trancfery, wiluch resulle ma dimuinhed
recording rate, In the caur: of Kimon, the buffored data inade Kaonn o trandierred o
Pooup via ite Unibus, The recording rale is therefore linited by the <pecd of Poup’s

Unibus.

e T e o S o e - imgritve 1=~ b
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4. The Instruction Mix Experiment

4.1. Introduction

In the last lwo chaplers we examined tHe performance paramclors ot the vancus

syctem levels and the hardware moniforing techniques employed lo cludy Thee
L]

paramelers, This chapler describes a major experment despned 1o answer coine

imporiant questions reuarding the archilecture of a computer.

O of the mest important set of measurements &t the mdlruction level o the
in«lruction usaue i.e.. the instruclion mix. The mctruclon mo, romb ned widh the
averane tune laken to execule cach of the individual instructions, yielde the averaoe
overall instruction excculion fime for most straightforward processer maplewentatione,
This 15 a measure of the raw speed of a compuler and so il can be used v comparing
different coraputers thal share the same acehilocture. It should be noted howe ver, that
in the prezent seneration of computers, the effects of pipeline architecture and cache
memery redoee the imp(’l".""((? of the instruction mix in the detcrmmation of the
averace overall inatruction execution time. The main use of inctruction mixos 15 now in
the desinn and implementation of the instruclion set procecssors.

Another important parameler al this level is the usane of addreszing modes and
special registers. Carlier compulers had special index regislers in addil.ion to pencral
purpase registers, The use of index registers considerably apecds up address
calculations for accessing  arrays and other data slroctures. Similarly, in «ome
computers, a special Sindiredd” bil in the instruction word indicated that the addrecs

provided is actually a poider o the real address. The frequency of use of index

registers was reporfed by Gibson [GIRS70] as a ceparate mstruction in the “indesiny’
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class because of e mportance, Our <tudy s bauved on the matruction mec for 0P 1]
for whach there ae no orypheil inder regislers or imdirect bils. Inclead, 18 hae 8
addre g modes wineh are used with any of the & poneral purpose resictera as

follown [DECT):

Table 4.1 PDP-11 Addrecsing Mades

Mode Syantatic Descriplion

0 I operand is in R

| (R addiges of the operand oo B

z () came: as mede 1 bul s mccemenled after use

3 a{12)+ address of the address of the operand is in Ry R s
incremented after use.

3 -(R) same as mede 1; bul R« decremented before use

5 (R same as mede 35 bul R s decremented before uae

6 Y(R) Y+ value n R is the addiess of the operand

7 aX (1) X+ value in R s the address of the addre.s of the
operand

Rezisters 6 and 7 have specialized funclions. Pegister 6 is veed as a stack pointer
and riacister 7 i the program counter, Register 6 is usually uaed with modee 2 (pop),
Alpuh) and B6{paramiicr access within the stack). Register 7 is usually used with
modes. 20mmediate), 3(abzolule) and 6(relative). Some inctructions have only one
operind ( e.q. INCrement, CLR), which 1s specified by a single mode-register paw.
There arc also double operand instructions (e.p. MDOVe, ADD, BlTiest) wier have a

source and a deslinalion operand cach specified usimg a mnde-recistor par,

T T A S ey
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Uses of Instruclion hlix

bven thonuh, hictenically the snctruction mx has been uned 1o calcolate the averoce

inctrochion execution <peed of a computer, it hat found many msre vwee. Amone ticee

al'e:

3.

Desien of fulure precessors.

Desipn of a new nstruchion sel involves lrade-offe bLelween cosl  of
mwiptementation  and  power  of  the nstruclion ety bebween hardwiered
unplementation and microcoded or coftware implementabion, belween opcode
encoding and time needed for opcode decoding and o on. Marcover, decsions
have 1o be made regarding provisions for wane hiate operands, prefcich of
mstruchons and operands and minber of aencral prarpose rearders, All these
decisions need the instruction min data to make oplimum choices.

Emulation of an inctruction <et

Due 1o the conciderable software efforl vested in the existing instructien «et, o
is advantageous il new processors can emuiate instruction ccla of therr
predecescors, The efficiency of emulation ¢an be increascd by providieg special
fecatures in the hardware of the new processer. Some of the emulation can be
performed using microcorde, some can be done in software without too mch tine
penalty. Instruction mix helps in deciding the level at which an inslruchion can be
emulated.

Designing a special purpose implementation of an cxisting instruction «c¢t

The instruction mix data can sometlimes indicate thal a patlicutar apoplication is




<drongly ased in favor of using certain intruction: Y cuch conee, a preal
purpose implementation ¢ in the farm of a new wedel or a hardware oplion) of
the inslruclion <et oplimized for the specific inctructions will be useful. The

advantaro {o be gained by doing this can be quanttfied using the mmctruction mie

4.2, Review of Previous Work

Studics of frequency counts for instruction ewecutions have been deacribed by
several authors, The best knoawa is the Gibson mix {(sce {GI3R70]), devclaped by Jack
C. Gibsen al 168 in 1959, Gonler [GONTE9] has comparcd the Gibeen mic wilh the
Universily  of Massachuselt™s mix. His resulls correlate well wiih Gibeon’s. The
substance of these resulls is that LOAD and STORE account for about 07 of the
inctructions eveculed, branches for 167 to 38/, index manipulations 137 {o 1&/7 and
arithietic 37 to 197, Theue resulls depend on both the ].“J" and the «ubjecd procrom
ect. tither «simifar mixes are reparled by Arbuckle[ARPBUGSG), Connecrs, Mercer and
SorlinilCONNZ0), Raichelson and Colling [RAICE6].  Foster, Gonter and Riseman
[FOST71] have gone one step further, by investigating the effecls of reducing the
instruction set. The emphasis of the above studies was moctly on the evaluation of
raw processing capacily of (he central processor. The subject programs were limled
to uscr programs. Lunde [LUMDYA) measured the instruction mix for PDP-10 and also

studind the register ulilizalion and commonly occuring instruction sequences.

3 In feet, the varation in (he netouction mer feam apphiation Lo apphiabion Forme the hanis of the cleptes
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2.1 WMathods {or Obtaining Instruction Mix
A varinty of methods have boeen used by researchers 1o obtam the inctruction mic

). Inatruction or machine cycle tracing
rd

Farlier mixes were meosured using software tracina, In this wethod, every
inctruction ( or maching cycle) is recarded fo oblan the m<truction ( and
operand) values and olher relevant informalion, If a hardware memtor is used

for tracing

[S 3]

operating system excculion as well as user program execcution can
bee Lraccd., The probicin here is that the internal wenwery of the hardware
monilor gels filled rapidly and it cannot be empticd into secondary memery faot
enough to avoid overflows [BORND71) Software we thods rely on inlerpretation of
user programs  [LUNMDZA, WINDZ3], with an interpreter deszipned 1o gather
mquéméi stalistics.  The disadvantages of this welhod are fhat only user
programes can be traced and morsover, the erecution of the lraced user
prozrams oets clowed down by orders of marnitude. This method theretore
cannol be used to obtain the inslruction mix for real-lime proprams, Lven with -
these disadvantages, tracing has been uscd because such a frace is a rich |
source of informalion. Apart from calculating fhe instruclion i, the trace can i
be used to gather information on register lives, sequences of opcodes, addiress
calculation, locality of reference and distance between branches, An inctruction
trace can also be uscd to drive a processor simulator fo evaluate varicus paging

and other alporithms,

2. Microcoded measurement facility

Recently [GVOIBT6a] microprogrammed processers have been used o gather the

A« 3 o g ar A A «-*‘..t, L iy by L ha A il i e
N
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inctruction mice data for the madruchion «et Fowz implementod on cuch a
procescor. Along wilth interpreting the inctruction «el, the microcode was
proxrammed 1o collect the instruclion mixc in the fast «lorase available iternal to
the nicroprocessor. This melhod is similar lo the previous method bul il
introduces very lillle overhead and is corfamly cheaper than cwploying a
hardware monitor. It is however, applicable only to microproaranned
Processors,

Jump trace

Aleyvander [ALEX72] deacribes a variation of {racing called Jump lracina. In this
meihod, tracing informastion is gathered anly when the flow of contiol in allered.
This method introduces less clow-down for the user presram bul the f{race
proddc.ed is nol as vseful as the complete troce. Morcover, to do this entirely in
soflware requires the compiler 1o insert appropriate code to aclivale the lraccr
al the proper jump points,

Sampling

When delailed information is nol required, one can obtain patameters _Iikf.- the
instruction mix or execulion profile by zampling the procecsor state al random.
Software camplers are time driven and interrupt the processor at random times
to obtain the inslruction or program counter in use at the lime of the interrupt.
Software samplers therefore cannol sample uninlerruptabile operating syalem
code. Morcover, separale samplers have to be wrillen for cvery operating
syslem. A “ardware sampling monitor remeves these restriclions, Also, such a
monitor docs nol causc any overhead or perlurbabion in the operabien of the

L .
syslom under measurement. We have therefore chosen this approach for our

study.




A4.2.2 Indication of Varistion in the Jnstruction Mix

Nost of the resecarchers measuring the instruction mix have reported thal the mic is
dependent on the application area chosen for measurceent. Let us bricfly follow
throuph the various studies observing the variation in {he inctruclion e On the
L _ higheot level, there is variation belween different procesors (e, between different

inctruction setz), Some of this variation is of course due lo the procecsors being

intended for different application areas and due o non-undarmdy of orcade definihien
from processer to processor. I is however, instruclive o group opcodes in cerfam

groups for comparing dif ferent inslruction sets as was done by Gilrvon, The foliowing

tatsic 15 reproduccd from Lunde.

Table 4.2 The modified Gibseon classification

Paercentape of the execuled instructions in the Gilbsen dassces

Gibson’s UMASS Limde’s
results results resulle

18K 650/704 CDC 3600 PDRE-10
Inctruction class

| aad,slore 31.2 30.0 42.4
Integar add,subtract 6.1 1.2 12.4
Compares 3.8 1.2
Brianches 16.6 38.3 25.2
Flcating, add,sublract 6.9 05 49
Fic ating muiliply 3.3 - 05 2.6
Fleating divide 15 0.2 1.1
Integer Multiply 0.6 0.1 1.1
Intrwer Divide 0.2 0.1 05
Shifting A4 2.2 3.9
Lopical 1.6 0.5 1.0
Miscellzneouw, 5.3 0.0 15
e O TP AT Sy~ o Ty P v s



Sunbodova {SVOBTAY has compiled a acl of mslruction s for the W 3600/370

cevie of processers. These processors have very sumlar instruclion cels. The
variation in the instruction ix results from measuremente perfarmed at dithorent

imstallations, The table given by Svoliodava is vepraduccd below:

Table 4.2  1Instruction Mix at Dilferent Installations

Installation/ Modet

Slanford Arponne LUICLA RCA
Universily  Nalional Lol:aratories
Laboratory
Cpcede Vype 370/145 360/7% 260/9) 70/4%
Intaar Inad, store 26.51 50.85 C75.2) 5.7
and arithraclic
Flcaling- point load, 0.52 2.82 28.62 -
«tore and arithmetic
Desimal 0.06 - - H.0
Br.anch 32.74 26.04 18.30 34.2
Logpical, compare, move 18.97 17.15 13.4} 17.1
Control, 1/0O 0.54 0.37 - -

e L L T R L R e R Tt

Note: 18LW 370/1A45, 360775 are arithimetically orieniced.
138 B60/9) has a powerfual floaling point unil
RCA 70745 has an instruction set almast identical 1o that of the 1814 36O,
The instruction mix was oblained from fracing user programs ( mustly Cobol)
« meane no information was available in the reference

o ot sw e e s e se e s sm s co b be m RS B a4 ow et Ge mm Se 00 86 eb 06 mm S5 ba Se A FB AN B $B 8 G4 te BB S ou s eeem Ao ok @ Sa MH MMt 10 4 ba ol em T ar e 6 L 4m Tc o 8 sw Mb 64 0l ow ve VA Ge vo
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. Phoche s [HUGHD? O] reports variation in the inctraclion e belween user programs

and the aperating sylem, Finally, Svobodova and Mallson [SYOB?6] report thal the

in<fruefion mix can vary belwern difforent phases of cxcoulion of a wingle prestam,

A4.3. Slatcment of the Problam

I can be seen from (he above discussion thal there is noticcable wvariability in the

| inslruction mix from machine (o maching, from installation to inctallation for the <owe
machme, from program {o prozram in the same installztion and cven from phase to
phase in the same program. for programs weillen in acsombly  languiges, the
mstroction mix will depend on the parficutar programmer wriling the proasam. This
makes the use of the inclruction mix for design and oplimization of processors
somewhat difficult, Any measimement of the inclruction e which does net span all
arcas of application of the measured processor, cannol be assumed o 1epresent the
overall instruclion mix experienced by he processer. Since the cxlent of varistion in
the instruction mix is nol knowa, the processor dezigner faces the failowing pilfalls:

1. If the wvariation in the inatruclion mix is significant, the cesl/ performance ralio
degrades if a non-representative mix is measured and more atiention is given 1o
unimporiant ins:lrudion; al the expense of important inslructions.

2. A processor oplimized for a balanced instruction mix is suspected of being
unoptimized for a particular application area and is therefore nol used cven

though the actual variance in the instruction mix {rom arca 1o area is negligible.

It s imporiant lo do a scientific study {o quantify the variance causcd by ihe
different factors in the overall instruction mix. Quantification of the variange asinde the

hardware architect in avoiding the aboave pitfalls. The variation in the instruclion mix s
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cavscd by many factors, some of wiich were discussed in section 4.2.2. We list below
the moest impoirtant factors thal have an impact on the instruction mie

1. The instruclion «el of the processor

2. The broad application area

3. The indiradual programs belonging to the diffcrent application are as

4. The different phasce of execution in a proaram

5. The compiler uned to translate the high leve! program into the machine languace

6. The individual programmer in {he case of assembly lancuape proestams

We have decided not lo investigate the variance cavwed by the ditferences in the
instruclion set and by the individual proarammers since theee will form complete
studics by themaehses. The methods used in our study can however be extended to
study the variance caused by lhese two factors also. We will also nol study the
variance caused by the use of different compilers mainly because H such a study 1o not
to become too compiler specific, it needs many different compilers wrilten for the
same languape and for lhe same processor. This was nol possible even for the mesi
populor languages viz, Forlran and Cobol.

Thee goal of our experiment is 1o compare the mabivudlion mic for different
applicalion areas, programs and execulion phasce in the pregrams to quantify the
variance causcd by cach of these factors. If a cortain brood apphication arca (husiness,
real time) is found to have a significantly different inctruction mix, it might e
worthwhile to dezign/ implement a special processor or oplion for that area. But cven
in a wingle application area, all the programs cannol be expocied to orhilit the <ame
inatruoction mix, If the variance due 1o individual prozrams is found to be coraparable to

the variance causcd by application arcas, il will not be possible o oplonize the




procesasor for particular areas. A large variance resulfing from the diflorent excculion

phascs will defeat any altempls of oplimizing a procersor ( or microcode used for
iraple mentation) even for a cingle proagram,

The statistical model presented in the next cection is dennned 1o address preciscly
these questions. As a by-product, it will yield the instruclion miv composed of over 10
million inctructions selecled al random from a large nuinker of POFP11 programs. We
now describe an experiment designed o study the varation in the inctruction i
causcd by the threc sources. This type of design is well known in statistics as "Nested
(hierarchical) design®” ( see [ANDETA], [SNEDG7] chapler 10 ). Consider the instruction

o

mie #s a veclor of the fractional ulilizalions of different opcodes arrangnd in wome

five:d ordoer. The madel being used is as follows: 4

')'.z' ,,i+‘+' +~"'
a5 P S
= 1,2, . N (1 = number of ditlerent opcodes)
= 1,2, e @ (@ = number of different arras)
ke 1,2, wee p (p = number of different programs within an area)

1= 1,2, ( s = number of different segments within a program within an arca)
and
i’ = overall mean fraction for the ith opcode

A'j = cffcct of the j“‘ area on the ith opcode

A Actuplly, cur meperimind can alro be comiidered 28 an crampls of a 'Mingd nerdod (uirarchics)) meded The
teaton i thal aur § apphiation maas hive nol been chorin ol randton from a large nurber of avin'shie
applitalion arzar Thoy are roally fised arear thil wo wint to investitede The pracrams wilhin each area and
the surirenla witlun aath procram arg howover randor canples from o laee sot The anslyws doct not chinge
ureder the “fired model, only the interpretation of the rosulla changee Wherear in the randerm’ el we ean
oxlont our raguila fo all wppheation aranr on o PDP. 1Y, in the 'fixed’ el the conc'vrrons diawn ore
rectricted only to therr speodic mnar Hownuer, since the conrspl of an applization man s vasoe and sine: we
heve tprancd plment oll pplitation erane on the PRP-11 with ot & arenr, we have decdled te ignorn the
ditfine finn hoiween n ‘randor’ and o ‘faed’ factor moded.
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szw - effect of the k! program in the P arca on the itM opcode
S o effect of the ™ wegment in the k! program in the M area
(i Ah
on the i’ opcode

The quantities A, £ and § have the following distribulions:

/\'j 15 Vaken from IN(O,a4) for all i

pl(j)k in taken from IN(O,ap) for all i

S' s taken from IN(O,O'S) for all i),k

s
(ji)
where, INea,fi) reprecents a normal distribation with mean o and

variance fi.

Th analysis of variance table ( ANOVA) for each opcode is as follows:
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Table 4.4 The ANOVA Table

Source Degrees of Frxpecled Maan
of variance freedom aqian e
ry ?
Application arcas a-1 (rs + f»:g'p + ?--*=l”-o'A
- 2 2
Programs within an arca a(p-1) Tt A,
- - 2
Seyments within programs azpx(s-]) T,
]
Where,
2, .
ag'= Variance due lo segments
2 .
p = Variance due 1o programs
2 . L
O’A = Variance due to application areas.
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|
op.'.nd(e“* = average fraction of the i

[ e
as deccribed Lelow.
Lot vl defime -

e theee vanances are detervaned tor an opcode, e pocable to compace
the i oot cach other 1o determme which of thowo are <ammilicant,

wantances are eJtimated vang the me acured e trachen e data

| .

op ade [y T Average fraction of the il opcode over all o wments,
- for the kth program oy the 1“1 ArCA,
)

or: ode = average fraction of the Jdh opcode over all proarams
(R -

for the ' area.

th opcode over all arcas.

Thv dormulas for the sums of cquares are as {ollowe:

Talxle 4.5  The Measured Sums of Squares
S of aquares formuta
betweon-- for sum of sguares

apolication areas SEPX IZ'?a(ONOdCIJ** - op(cd(;w*)2
proarams within areas s Z l ( npcnde'. T opcnc!(e'.r )2
Igjza  1okop Jht JELd
: — i P
seemenfe in prozrams >: >_ ( opcode, - opcode. )7
Igjsa lskep  ldiss ki ks

The sums of squares are divided by the corresponding degrees of frcedam giving
the wean cquares, The ANCWA tahle (table 44) chovwe thal the me o cooarac for

_ , ‘ ?
scaments within programs dircdly estimales o The other two can cauares can be
o)

uscd to estimale a; and then 62.

A
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4.4. Testing the Null l-lyp:olhcsis

There are two nult hypothewes for every opcode thal can be fecled with ow dewon
of the evperiment,

Hypothesis 13 There is no difference in the {raclion of use of the opeode fraom applicslion

arnra lo applicalion araa, that is,

Bypolhesis 2: There is no diffevance in the fraclion af use of the opcode from propram fo

program wilhin a given application arca, that is,

2
o = 0

Thise hypolheses can be lested using the analysis of variance procedure. Conszider
the ratio ( sce table 4.9)-

2 2 2
M=an square between arcas T 1 S stp-e:aA
* D
ri - A o=
2 2
Mean square belween programs O ¥ s.w'P

If hypothesis | holds (oi = Q), the ralio F1 should be 1. However, if the hypolhesis

in falre (o > Q) , Fl should be > 1. Morgover, greater the dependence of the

fracthional use of the opcode on the application area, larper will be the value of o

A and
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5 . .
farner will be the the vatue of F1 2, Cisher has fabulote d the theoretical Vo pomte for
the [T ratio distribution {or varicus degree. of frecdom in the numerslor and
denommnataor. The obuerved F ovalue oxcceds thin tabulated valis i 17 of the caure

0

cven when the null bypotheais is true. The tabutated vohie s used in the follewiog
way ¢ I dhe obuerved T oin much less than the tabulaled valus, then the nuall
hepothe s holds, On the other hand, if the ob:cerved value is larper than (he tabulailed
value, then we can say with 997 confidence that the null hypothesis s false (v olher
word- . the voriance is significant at the 17 level ), When the observed valie s only
shiphily lras than the tabulaled value , we cannot make a strong statement resarding

the null bypothecis,

To test hypothesis 2, we use the variance ratio -

2 2
Maan square belwesn presrams oo+ sron
- pe
['?‘_ = =-
2
Maan square between segments o

Whenever the above method sumoests thal a particular variance is ienificant at the
17 fevet, il is interesting {o cstimale the confidence fimils around the measured vahe
of the variance ( the formulas for the upper and lower bounds are given on page 2895
in [SNEOG7T). This tells us how much variability can be cxpected in the measured

variance if we were tao do the whoir experiment acain. If we poerform the esperiment

with more application areas or wilh more programs in eath area, these confidence

the varviane e ratio ie wtually donclod by F. We will call the above catee FL and Al carrecponmbe ratio for
hypoikouis 2, F2

G 1n owr pxprrttn b S oo peS Go the 37 pomd for F1as 443 ancl the 17 pond for T2 4w 191
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hoaleswall shirink bal the vanance caused by thewe fadlars in an epeode will not be too
diferent. Since the metruction mix for a segment 15 nol cemposcd of emaller
me asurements, we cannol determine the confidence linnte arcund the variance due 1o

. the sroments,

4.5. Details of the Experiment

v the actual design of the experiment we faced the following trade off: lo gather an
inctruction mix repres<entative of the inclrudtion excculion of the whole PRI family
of computers, we need to measure a large nutiber of applic lion arcas from all the
arcas inowhich a POF)T has been used; bul on the olher hand, as the numlber of
applicalion arcas zoe< up, the time required to walther and run a few ( al least B)
reprezentative programs in cach area also goes up. We have therefore restricted our
cxperiment to five areas which represent most of the instruction evecutions an the
PDI) ) family of compulers, Within rach arpa, we have oclecled five reprecentative
proatams thal were being used by other users, {hal is, we did rol «tudy <yothelic
tenchmarks, Wilthin cach program, we measured 24 scaments and rach measurement !
consisled of sampling 20000 instructions. at random and conatructing the instruction

mix veclor, The following areas and programs were used :

1. Scienlific Fortran benchmarks: B user benchmarks

2. Business Cobol benchmarks: 4 user benchmarks, plus 1 sort

w

Operating syslema: RSXT]-M, RSX11-D, RT11, RSTS, Hydra

4, Syutems programs: Forlean and Cobol compilers, BASIC interpreter, macio

assembler and Lhe linker,

5. Device oriented syslems: graphics lerminal, front end processor, Xeronraphie
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printer centroller, proceaaer O on Caamp { beavily toad-d with 1/0 devieee), Chte
) p )

hoot € controlling a large colicction of 1LS1-1) procecanra),

Since the operating syzfems and the real lime device orinnted syclems wore to be
studicd, il only tool that was applicable for all {he arcas was a hardware wmanitor, Tins
el v measore the instruclion micc without perfurbing the measured oy atom in any wae.
Jecavse of houtations of the hardware mondor uzed (Conn), we could nol recerd
cvery instruction taking place on the meastved processer. Such a trace of inctructions
reguites a very  hiph bandwidlh output device for receming the data from the
hardware monitor. We were therefore restricted to campling inctructions at randor.
There is actually no simple way 1o specify scleclion of insdruclions at random in Kanen,

th

Kamon can be et up o sclecl every n''' instruclion occuring on the Phest unibus,

where 1mnz2l€ oy, Unforlunalely the value of n has to e opecificd before the

cxperiment beging and il then remaing constant throughoul the expernnent. We usually
chase a prime number for n (ypically 31 or 127) <o thalt the problem of Kmnen
synchronizing with small loops on the Phost was avoided. There ic still the pocsiladity
of a lnop of some exact mulliple of n instructio‘ns, but we fell that this problem is not
significant since in our experiments such loops were broken up due to the following
evenis:

a> occurrence of a clock or a device interrupt

b> a pause in the data gathcring due to overflowing Kamen's internal dala gathering

buffers. The overflows occur because of the slow oulpu! link,

i alio possible 1o cample the instructions such thal the first inslruclion occuring

after every nomicroscconds is sclecled for analyis. This wmethod is however, nol
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suitable for measaring the instruction mix since it addually gives the distrilzution of the
lime: <pent in eyeculing the varinus instruclions mstead of the fregquency of heir
crecolion. Since we could nol obtan a record of consccubive ncdructions, a oludy of
frequently  excauled insruction sequences could nol be performed. In chapter
6 we describe a separate cxperiment to <ludy the inclruction sequences.

Cven when sampling inslruchions at random, it was nol pocsible to record the
occurrence of cvery sampled instruction becavse of the low speed of our oulput
device (a 300 baud link 1o the FDF-10). We had 1o perform seme dala compression in
the «upervisory compuler before sloring the dala for post-procecsing. Each campicd
instruction is uced to update the appropriate counters in the main mecmory of the
supervisory computer. Afer 20000 instruclions are processed (e one ceament), the
counler values are stored on some oulpul device for later processing. The counlers

are maintainaed for the follewing: each of the PDPI T opcodes, 8 medes and & registers

for single operand instructions, 8 modes and & registers cach for lhe source and the

destinalion operand for double operand 7 instructions. This data comprescion reduces
the amout of dala that has 1o be tranemitied to the oulpul device for post-

proce ssing

&8

bul it prevents us from studying the occurrence of crosc-product.. of
addre wsing medes and registers or of source and destination modes. This study
{herefore cannot answer questions like how many times cither the source or the
destination mede is zera for the MOV instruction?

Most of our measurements were performed on the POF 11 models 20 and 40, These

7 The amne's operantd intdrocis s CLEIR), COMIR), INCB), DUCIED, REG(ED, TSTAD, ROR(E, RO,
AGRUY, ASLUD, SWARB, ADCH, SBCHD, SXT The doubtt aprand mptouchion: e MOV, CRIMR),
ADDSHB, RITHED, MG, RISU)
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models do not have a cophisticated floating pomt or business inclrauchion el 1 we
had used the newer models, we would have corlainly discovered more unane of the
floating  point and  business  specific matructions in the scentifc and  business
applitation arpas. Morcover, the Forlran and Cobol compilers have been nnpreoved
since the measimements were performed and the new compilers are expected to une

the instruction set more wisely.

4.6. Results of the Instruction Mix Experiment

Thee resulls of our experiment are presented in Talde 4.6, Only Thowe opcodes and
addre csing modes which show significanl use (more than 0.0} percent) are included in
the table. The complele instruction mix is given in appendix 3. For the variance duc to
applicalion arcas and programs, the 907 confidence limile around the variance are
given in square brackels. If the variance is larger than 100, the confidence limile, are
omitlnd. The variance is reporlied as O if it is less than 0.001. Some values of the
vm‘i;mcc‘ are negalive and these values and their confidence limits are not given. A
negalive variance means thal the variation is less than whal would be expedled if the
opcnde {ractional usase values were drawn from a single normal distribution. We can
interpret the nevative variance (o mean thal the variance is small. The fotal variance
for an opcode is always po':;itiv(-.‘. Our parlicular medel attemplz 1o split this total
variance into three parls. Il just so happens that the particutar values of data collectod
somelimes lead 10 a nevalive value for ovnc of these three parts. The obeerved FI and
F2 values are also aiven for each opcode and the addressing modes and regisiers. The

significant T vales are flapzed with a %" Note thal all the variances due 1o pronrams

L3

are significont bul quile a fow variances due o application areas are nol. 1l is also
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mleresting 1o ohuerve how the instructions and the addresann wodes are bemo ner ot '
by proatams in cach applicalion area. Table A7 presents the insdruction e by

apphoation arca,

P Ay
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Minaber of application areas: 5
Number of proatoms poer appl arca:

Mowber of instruclions per scgment:

M.ame fiverall verall variance
mean standard duc 1o
deviation applica-

tion area
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20000
Total number of instructions sampled: 12 million

Table 4.6 The Instruction Mix and il< Variance
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Tolal percent of single operand inclruclions: 15,2
Percentane of individual medes and resisler unane !

percent i

; for zintle operand incdructions: .
( mede 8 S0.020 0 5.826 71108,145) 276 Go 2 = 1)) 1
. mede 1 11,734 1.618  616,12) 32119.3%) 76 1 w11 3
; mede 2 8. 438 1.205  21{4,6] 251G, 28] 6 1 w 4N 5
moede 3 7,790 2.904 230 &4 .9 » 62 ‘ 1
mede 4 4,493 . 3391 .3100,2) 23114,25]) 1 1 v 023 ;
mede 5 000 .80 8 0 0
wede 60 16,120 3.107  3413,60] GRT42,7%] 45 2 % S0
mode 7 1.281 .721 10,2 Gl4,73 1 1 » 119
reg 26.191 3.987  3310,8&6) 197 0 1 = Q4
ey 1 11,368 1.995 516,17] 78144,78) 58 1 w20
reg 2 11.563 2.143 1218,25] $2[34,59] & 2 « 160
1 reg 3 16,878 8,547 309 175 31 ve 16w 156
reqg 4 6.456 1.264 118,7) 291018,321 1) 1 % 173
reg S 5.437 1.824 10719,19) 31119, 34) 9 2 o 77
reg O ) RN .44 41 14,7%] &0 164,941 202 2 v fa
reg /0 13,814 3,685 1910,601 233 10[’ 1 LE :
Tolal rercent of double operand ins<iructions: 46.8  percent
Percentage of «ource mode and register usage:
mede 8 24,784 4.8¢3 103 421(26,46) 22,958 & 12w 45
mode 1 8.211 2.287 2418,28) &15,9] €.810 ~ 14 = 21
mede 2 43,826 4,420 27128,136) 43136,%4] 58,7283 = 9 o 2l
mode 3 6.510 2,505 24 [’:n.loll 2120, 25) 13,197 % 4 v 43
mede 4 1.2M 431 51 20,2 L5562 2 I 1)
mede 5 .oy . Beo Ji(0.8] 4] .8 e O
medde: 60 J8B36 1.468  711.13] 1318,15] 9.993 3 ]
mode 7 572 .138 .118,.2] LA48.2,.04] .08 2 v 113
reg 8 15,736 .26 32128, 361 25.4%4 .7 o 32
reog | 15.604% 2,925 251,513 Saleh, 1841 11,938 2 o 1Yl
reg 6.282 1.188  5I01,9) 14,7 2.°0% = 5 w 57
reg 3 6.537 1.505 912,14) 915,101 19.779 = 6 St 2
reg 4 11.RLG 68,098 177 42127,47) 2303 % 7L w43
reg H.101 RS .1108,1) 1816, 1] 8.625 O '-"(‘)
reng 6 JS 866 1.834 389,211 52134,5W RSt 1 » 171
reg 70 22,986 4.726 101 45127,508] 75,249 w11 o 15
Percentage of destinalion mode and register usane:
moede @ 42,35 4,018 73125,1131 37’.’ 20.3(-1 66,336 «w 11w 17
( mode 1 7.211 540 5,10 A.838 L7 % 27
mode 2 Jl- 475 BLIR3 172 87[9.).‘“'\] 22,0686 = 1B = 74
mede 3005 ﬂ(!..* 1.834 710,16] l: 526,500 G1.75R 1 ool
mede 4 18,192 5,607 152 S(13,24] G.3d « 36 «» 7R
mede 5 .M7 312 818,m (HB 0] .07 ) e 39
mede G 11.8B17  2.723  Z113,52) "7[17 a 7386w 6 e 175
moede 7 . 7081 .168 818,.1] .50.3,.9) A 1 s B4
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4.7. Conclusions

In toe chapler we discussed a major experiment desiened o addre<s the question

of the varability of the inctruction mix. The measurement= indicate thal a statictically
cpnmificant variation in the inctruelion mix is cauced bolh by the application arca and
the imdradual programs v a gieen area, bul nol by the ditferenl phane 2 of exccution in
the « wac program Moreover, different instructions axbibit ditferent behavior, The st
heavily uned instruction ( MOV ) is affccted mere hy the indradual prescams than the
apphicobion arcas, In olher words, we cannot specd up e evecution of the MW
instruction and hope 1o achicye the same level of sperdup Tor all prosrams even in a
spectic application arca. Similar conclusions can be drawn for other meliuctions g
vell, T is therefore nol proper to attempt 1o over-eptinuze a preceswor for a
particolar application area.

Th~ overalt means and the standard deviations repoerled for individaal inctruchions
are imperiant v their own right. The overall standard devintion and the individual
variances are {o be uscd as follows:

Suppose we make another measurement of the inctruction mix using Al
arcas, Pl programs in each of the areas and S} seoments in each
presram. Note that any of the quantilies AL, Pl or ) can be cqual to ],

We then calculate the percentage of usage of say the MOV inctruction {o
be "4l We can then say that M1 as an cslimate of the overall percentane

of 1 isaue of the MOV instruction for all the exccutions on a PIOF-]11 has a

var ance equal lo -

A\ 4 = s iR S A R——

xR
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Where, the variances are those given in fable 4.6 for the MOV
instruclion.

Figure A1 displays the PRP-11 instruction lrequency distribution measined in onr
study. I s intervesting to observe that only JO inctructions arcount for alont 70
percent of the inslructions excculed on a PRP-11. It can be ccen from Takle 4.6 that
many of the inctructions are celdom used. Similar results have beon reporlied by otber
rescarchers  studying  the instruction mix.  Our measuremenls  indicale  thalt the
addressing mode 9 ( aulo-decrement deferred ) is abucst never used and a vood case
can ke made for il2 climnation. Since owr study involies saphez mere than 10 mllion
instruclions fror 25 independent prozrams, we expect thal the true nature of the
instruction mix (.or the POF-11 has been caplured. Our reculls form a data base which
has impoarlant applications in the design, implementation and emudation of PDE-11 and

similar processors,

The measurements reveal some anomalies. It can be seen that the cri for the JP
instruchion is extremely high. A look at the raw data displayed in the inctruction mix
by application area table (table 4.7) indicales that the application area consisting of
scientific Fortran benchmarks shows very high use of the JWMP instruction compared 1o

any other application area. This leads to the larpe valie of the observed variance

caused by application areas for this instruction. The trouble lics in the particular
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Fortran compiler® gued which pencrates the JMP anctruclion inddead of fhe branch
inclriclions,

o mberesling 1o look al the whole experiment in the lipht of the workload
characterizabion problem. Intuilively the differen! application arcas represent vdiﬂmunt
workieads since il is clear thal cach of these areas is domg a diffcrent kind of “work’,
The Toriran programs-are manipulating numbers for the purpose of solving tquations,
the operating syslems are performing the processer and memery scheduling funclions,
whereas the real lime syslems are responding 1o the cvente happenning in their
cnvironnments, Our experiment is an attemptl {0 characterize these intuitively dilterent
workloads in ferms of their instruclion mixes. 1 turns oot thal a meaninaful
characterization al such a fow level is nol possible duc to the vaviation in the
prozrams belonging lo these arcas, This negalive resull should not be inlerpreled as
saying that a characlerization at a higher level is nol possible; in facl, future research
should concenirate on the next higher level of afomic ‘work™ c.g. in terms of

mamipulations of higher level dala structures like vectors, lists, process control blocks,

strinzs and <o on inlead of integers, reals, bits and words as wan done in {hin study,

R Wer vued e FORTRARN IV comrpiter whith his novs boen o placed by FORTRAR. IV o

!
i
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5. Mulliprocessor Contention for Shared Daots

5.1. Introduction

This chapter studies contention for shared data objecte in a mulli-processor syclem.
A common problem in a mulli-procassor system is the contontion among procescors {or
shared resources. Thin contention can occur al varicus levels, Caamp has up to 16
POP-1 1% which can independenily access 16 memery porte througn a cross-point
swilch. The lowest level contention therefore occurs at the cross-pomt cwitch, 10 two
or mere processors {ry 1o access the same memery pori of the same bime, all bul one
of them have {o wal. This problem has been ctudied carlicr by Strecker[STRETO],
Bhandarhar [EHANY3] , M:Credie]MCCR73] and by Baskel and Smith [BAGK76]. Fuller
(FULL76T applicd these modeis {o specific hardware configuralions of Canmp  and
showed thal memory interference dors not cause severe desradation, ve. less than 10
percent. On a higher lgvel, there is contention for shared daja. The shared data can
be a few bvtes in a system table or a large data structure like a linked list or a file.
On a «till higher level, there is contention for devices like the line printer or disks and
common noftware processes for memory management or uscr measane handling.  In
this chapter we investigate the contention for the shared data structures in Hydra,

The problem of contention for <hared data is comewhal more difficoll for a
mulliprocessor than for a uniprocessor. In a uniprocessor, system integrily can be
maintained by simple techniques like blocking all interrupls while accessing critical
syalem hhln';: and by careful coding of The interrupt roulines. In a wmulfiprocesser
howewver, the scheduling and coordination of the individual processors h; aclhieve

parallcl operation is a significant problem. One approach in to have a common zhared
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datakase which containg all the information necessary for a procesasor 1o make s
< heduling decisions, This is the approach taken by lydra- the kernel of the operating
system for Canmp. While one procecsor is examining or updating this database, all
others must be prohibiled from accessing or mediflying 1. There are olher shared data
objects as well which are also required lo be accewsed by only one processor al a
time. The mechanism for such mutual exclusion in CmmpfHydra syslem is a loek”,

A Hydra lock should nol be confused with a scmaphore since the former is al a mere
primitive level than the latter, In Hydra, the lecis are used 1o wynchronize accces 1o
small but often frequently accessed shared dala ohjecds. The ‘lock™ and ‘unlock’
operations are similar to the P and V operations on semaphores except that when a
processor blocks while trying to set a lock, the process running on the proccsser is
not cr)niéxi--s;wappvd off the proccusor. Ralher, the processor is siply pul in the wail
state (the processor is said 1o be blocked ) until the reccipt of an inler-proccesor
signal { interrupt ) nalifying il thal the lock has been recel.

The deck and unlock operalions are used to implement a more gencral and
sophislir’aled sym:hmnizahon.mr:(hanis.m and some message systeman. The fundamental
queslion we sought to investipale in this sludy was how muth processer desradation (s
due 1o contention for shared data objecls in Hydra synchronized by the lock/ unleck
operations. The amount of degradation will be affecied by the number of active
proceasors, lengthe of critical sections (.e. the instructions executed between a

Inck/imlock pair), frequency of lock execution and the distribution of lock/unfock

operations across the differant shared data objects.
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5.2, Review of Praviows Work

The coftware lockout problem was modelled as early as in 1963 by Madnick
(MADMGH]T He considered a <imple system connisling of a cinale crihical werlion and
calculated the wean number of blacked processors as a funclion af the lolal number of
proccusors in the system. M:Credie [MCCR73) exlended this maedel fo indlode an
arbilrary number of crilical sections in landem. The resulle showed thal it s
advantaccous {o have two smaller crilical scclions instead of a single critical section
which does the work of the {wo smaller ones. The designers of Hydra have therefore
chose n lo have many small critical sections in Hydra,

To the best of our knowledpe, evperimentat verificalion of any of theae medels has
not been attempled 2o far, The software lockout probiem cannot be investigeted using
soflware monitors duc 1o the excessive perfurbation invoheed. The facl that a powerful
hardware monilor is necessary for (his sludy is probably the reason why lhis

impartant prablem could nol be examined carlicr.

5.3. Description of the Lxperimental Setup

The Kamon was used in the tracing mode lo record the occurrences of all ovents
related 1o Jocks, The data was post-processed (o reconsfruct the operations on the
varie: lncks and the blocking experienced by the host processor,

A lock is composed of three fields: lock count, sublock and mask. The lock count is
initiallyy 1 indicaling that the lock is free. When the <harcd object becomes loched, the
fock count i -N, where N (N » 0) is the number of precessors wating for {he object.

The cublocks are uscd to ensure thal only one of the waiting proccssors get acccas o
L]
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the shbared object when it becomes free. The mask field in uscd to indicate which
proccssors are blocked on the Iock, The schematic code scquences for tock and unlock

are given below:

LLOCK: decrement lock count.  UNLOCK: increment lock count,

exil if equal ta 0. exil if grealer than 0.

131.QCK: mark sell as blocked. inifialize sublock.

Turn off all interrupls Send unblock interrupt to all
excepl the unblock proceasors blocked on this lock
signal. Cxil,

wait,

{ry for sublock,
If fails go to BLOCK.
UNIBLOCK: exit.
The menitor was set up t6 detect events as follows:
(1) When a lock” is atlemplad, oblain address of the lock and time slamp,

(2) When an "untock™ takes place, obtain address of the lock and time stamp.

(3) When an ‘unblock’ lakes place, oblain the time stamp.

The tirst two events give the critical section time when the allempt for the loch is
successful. Whenover event 3 happens, it is always after cvent 1, I indirates that
the atlempt for lock was unsuccessful and lhal the processor was "blocked’. The
address of the lock is oblained from the previous event 1. The blocked time is
determined from the time stamps of event 1 and event 3.

We used three benchmarks to generate loads on the system. Each experiment
consisted of running one benchmark by ilself and collecling the oulput of the hardware
monitor for post-proccssing. Al the benchmarks create about 16 different processes,
cach execuling lhe same program. The processes do different amounts of computalion,
synchronize with cach other and repeat. Benchmark 1 and 2 are two verciens of a
parallel program 1o find the rools of a transcendental equation [8) They use two

different types of semaphores for synchronization among themschees. The tiaed
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‘btznchmm'k is a synthelic program which evecutes varicus kernel calls intermixed wilh‘
small amounts of user level computing. A fourlh meanirement was made during the
usual user hours to give the frequency of us.ég,e of various locks far the current
typical user load. At the present time, C.mmp is nol heavily loaded during general user
sessions and measurements of Cmmp under near saluration condilions will have to

wail until general usage of Cmp increases.

5.4. Locks in C.mmp/Hydra environment

The kérnt—:l of the operating syctem for Canmp is hnown as Hydra. I has been
described  exlensively in [WULF75] We bricfly swmmmarize here the pertinent
information. Hydra solves the processor scheduling and conrdination problem by

maintaining global data structures containing information regarding the status of

processors and feasible processes. Locks have 1o be associated with the objects in this
datal:ase. Apart from these locks, ibere are locks on clher shared objects. Cxamples
of an object are a pape, a semaphore, a process or a file. Every object has onc or
more locks associaled wilh il for accessing different parls of the object. Since there
are thousands of objecls in Hydra, there are also thousands of locks.

Not all locks are however, heavily used. In our experiments, we observed of the
order of B frequently used locks and a number of lightly used locks. One of the most
frequently used locks is a feasible queue’ lock. Processes which are ready o run are
placed in one of eight feasible queues wailing for a procecsor to become free.
Currently only two of Nm' eight queues are being used, the first one for repular
processes and the cighth one for high priorily processes. Anolher frequently used lock

is on lhe ‘processor list® which is a list of all 16 processors containing information
I S
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aboul their status. Every lime a processor becomes free, it goes through the feasible
queues and lhe processor list {o determine which proce.sor should work on the next

proccss. The next important lock is on the free core list. s the lock on a list of free

physical page addresses. This list is uscd when papes are 1o be swapped oul or
brought in. A similar lock for storage inside the kernel is called the ‘kernel storage D
lock™ The lock on “stop mailbox® is used by the policy medule 9 1o cormunicate wilh I

the kernel. This lock is accessed every lime a process has to be starled or «fopped.

The ‘KMPS lock’ is the Iock on a free core list which is used by the scheduier to
allocate and deallocale fixed size bincks for process information. It is used cvery time i
a process is starled or slopped or when a message is cent 1o a process.

There is anolher interesting lock called ‘lock on a page”, Every data page ( the size
of a page is 8K byles in Commp) in Hydra has a lock associaled with the whole pape
and this lock is always al a fixed offset from the beginning of a pape. Since there are

50 many pages in the sysiem, they have to be overlayed through a relocation register.

Due 1o {he well~-known deficiencies of a hardware monilor using information internal to

an operating syslem (or other software systems), it is not possible 10 pinpoint the
particular page thal has been locked even.whon the lock is detected at {he proper
offset from the beginning of the page. All one can say is that some dala page has
been locked. The result is that even though focks under the common heading of ‘lock
on a page” are accessed a large number of limes, the numbzer of times a processor has

to wail on such a lock is much less than if there were only onc ‘lock on a page” for all

pagcs. This phenomenon has to be trealed in a special way when developing a model.

L | ’

A pohicy modol akon the docisions 1agarding resour<o allection nreang veer programs,
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In addition o the abouve, there are a number of lock. winch are uscd very
infrequently. Most of them occur in the overlay dala papee and <o the hardware
wonilor is not able 1o precisely delermine which locks are being used. We grouped all
these locks under the heading "Miscellancous™. These locks also have fo be modelied in
a special way.

The processors on Conmp are non-homoaencous. Some are PDR1/A0% and come
are PDIP11/20%s, Also, some have 1/0 devices and some do nol. Mowever, <ince the
MHardware menitor can menitor only one processer at a lime, we were conelrained 1o
measine only one processor, There is a sofiware tracer available on Hydra, which can
be u.ed 1o monilor all processers at once. I is, however, notl suifable for studying
critical seclions since recording an event with the tracer takes aboul as much lime as a
typical critical section. The perfurbalion introduccd by tracing is unacceptable for this

.
sludy. In our cyperiments, we had mere processes than processors, <o zall the
processors were busy mosl of the time We expect all the processors to exhibil
behavior like the measured processor as far as critical seclions are concerned, .Tnblc

5.1 presents the measurements for the three programs,




Table 5.1

}. Averane kernel instructions !0
between lwo succeasive locks
2. Mumber of different tocks detected
3. (req usage of specific locks:
Processor list lock
feasible queue 1
feasible queue 8
l.ock on a page
Core lock
Stop mail box
KNMPS lock
Miscellancous
4. Avezrape lime inside a
crifical seclion (microsec):
Processor list lock
feasibie queue |
fcasible queue 8
lLock on a pape
Core Inck
Stop mail box
KMPS Inck
Miscellancous
Average for all incks

Run_dependent data;
5. number of active processors
6. Total time of measurement(millisec)
7. Total «# of {imes locked
8. Total # of limes blocked
9. 7 of locks that blocked
10. 7 lime spent in kernel
11. Average time(microsec)
between locks
12. 7 time spent in the blocked state
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Measurement of the Locking Behavior in Hydra

Program § Program 2 Synthelic

load of
Program 3
4]13 221 515
53 79 181
0.1584 0.3007 0.1151
0.1184 0.2829 0.1050
0.0338 0.0056 0.0
0.1723 0.0 0.2942
0.01%7 0.0 0.05419
0.0226 0.0 0.001
0.0927 0.0 0.005
0.2961 0.4108 0.2523
348 aG4y 3785
1915 239 259.5
156 1685 -
338 - Az0.9
Hh7.bH 307.4 685
282 2641 297
108.6 123 134
3175 461 441
279 378 279
13 14 12
17393 32921 20255
2955 5041 4260
130 577 146
%52 11.77 6.17
61.87 16.97 37.77
5888 6531 1646
0.297 0.837 0.747

Ceneral
multiuser
session !

0.31420
0.0%995
0.00285
0.234
0.0614
0.022
0.0
0.2312

10 For the processor uncice measuromend, the nverage inttruclion anecution time war 2 8 micrastcontis
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5.5, The model

Earhicr studiecs of the «<oftware lockout problem had focu wed on uaing a mode!l with
critical <edtions occuring in tandem. Qur meatinements on Hydra indicated that the
lecking behavior in Hydra approximales a medel with cridical cections in parallel inzlcod
of in Landem, Figure 5.1 displays the {ransilion malrix for lock acccases obuerved for
ane prozram on Hydra. IU lists the number of times a lock was called wittun 100
microtveconds of cxiling the previous Joch. It can be wcen thal very few of the

tranaitions occur in tandem.

Figure 5.1 Transition Matrix for Loch Acceases

lLoek name Total Transition to
4 times
usec 1 2 3 4 5 6 7 8 3 10
Feasibility queue 1 350 @8 8 0 8 8 ¢ 0 @2 8131
2. Processor figt 468 124 [¢] ¢] g 33 8 t] g It 2
. Kstr fock 74 @4 0 0 4 8 0 o 66 4] 1¢]
4. Fdsk tock 6 v o0 v 8 o & 0o 08 D 0
5. Feasibiiity queue 8 108 0 6 08 8 0 0 B 8 0 1b
G. Stop mail box 264 g 8 0 @ 6 0 8 B ¢] 14
7. Core lock 135 1 8 o & 8 0 2 0 ¢} 4]
2. Lock on a page 89 1 ©® ®» ¢ 6 2 6 © 8 @6
3. 1/0 system lock 66 B 0 p 6 0 ©®© 0o e @0 0
18. Miscellaneous locks 183 B 1 1 6 B 0 8 B (%]
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Figure 5.2. The Central Server Model
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A cdimple cenfral cerver mndel ((BUYEZ3Y ) was therelore uaed o mndel the
contention (see figure 5.2), In our medel, the N cu-domers are the proccesors in C.anmp,
the service «ite 1 is the non-crilical section execution and cervice siles 2 to M are the
different locks, The mean servi(:e.limc of server 1 is the mean time belween locks on
one processor. The mean service fime of all the other «crvers is the mean crilical
section lime for the corresponding lock. The probabilily Py = 0 and pp lo p,, are
given by the relative frequencics of use of the different locks. Since we have N
processors, each of which is enlering a critical section with rate l11, server 1 was
made a load dependent server so that its service rate is l111-nl where ny s the
number of customers at sile ).

The Jocks classified as “lock on a page® are medellecd as a mulliserver. The number
of :‘-u.bser\.rers is adjusted till the predicted blocked time for these locks agrees wilh
the measured block time. When we tried to model the “Miscellancous’ locks as a
mulliserver, the model predicted more blocked time than whal was observed tor all the
miscellancous locks, even wilh the number of subservers cqual to the number of

proccssors. We lherefore modeled the miscellancous locks as M tocks in parallel

misc
such thal each was atlempted with equal probabilily and cach has the same mran
scrvice time cqual to the mean critical section lime for miscellancous locks as shown in
figure 5.2. M- is adjusted until ihe predicted biocked time agrees with the
obsserved blocked {ime.

The model is used to caleulate the time lost due to blocking which can be

interpreted as the processor power lost due {o blocking, Consider the blocking at the

Jh lock (server) for a moment, When two processors are present at the server, one is
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actually receiving service and the other is waiting, When three processors are at the
server, two processors are wailing,

Buzen gives a compulationally cfficient method for calculating the probability of k
customers being present al the M server Plnyg = k) in the load dependent server

case.

040" * gIN-K, M-1)
AR 3 GIN)

| Plrpgzh) =
th,‘reA, ihe X, A, G and ¢ are the same as those defined in [BUZL73].

By permuling the numbers assigned lo the locks, one can get lhe probability of n
customers being present al the ih server for O snsNand2<is M

th

Fraction of the lime lost due to blocking at the ¢'" server is

tost; = P(nj=2) + P{n;=3)#2 + P(n,=A)3 + ... + Plnj=N}a(N-1). (2 <is M)
It then follows that,

Total fraction of time lost

duc to blocking = Z lost;
251zM
In order lo validate the model, we have to calculate the blocked time as seen by one

processor since the hardware monitor measures only one processor. Since all

proccssors are assumed to be identical, this is just the lotal blocked time divided by

the number of processors N.

o et
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Program 1 Program 2

13 14

measured [predicted]

0.1249 [0.105]  0.499) [0.5119]
0.0143 [0.0167] 0.2577 {0.1385]
0.0163 [0.0087] 0.005] [0.0023]
0.0152 [0.0212]

0.0066 [0.0177)

0.0697 [0.1182]

0.0023 [0.0032]

0.0490 [0.0352] 0.0687 (0.1253]

0.298 [0.325]  0.831 [0.776]

Figure 5.3  Validalion of the Central Server Model
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Program 3

12

0.1439 [0.0887]
0.0814 [0.0335]

0.0698 [0.0637]

0.4393 [0.4667]

0.735 [0.653]
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Figure 5.4 Predictions of 1he Madel
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(A) Inctcasing number
of processors:

Total percent fime
lost on one processor for a

37 processor sysiem 0.9593 25863 2.1046
10 processor sysiem 1.3011 29216 2.6040
4% processor system 1.7033 6.1505 3.586

(h) Using only one lock
for all miscellaneous
cridical sections:
Total percent time
lost on one processor for a

N* processor system 1.18 1.99 1.60
37 processor syslem 5.42 873 6.85
10 processor syslem 9.70 15.42 1056
4% processor system 17.10 25.00 15.78

{¢) Ehiminaling the
processor list lock:
Total percent lime :
lost on one processor for a

N* processor system 0.31 0.56 0.25
32 processor sysiem 0.87 1.66 0.62
40 processor system 1.14 2.36 1.10
18 processor sysiem 1.43 3.29 1.42
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* N = 13, 14 and 12 respectively for the three programs.

Figure 5.3 displays the measured and predicted percentage of block time. The
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apresment between the weasured and predicted values is fairly good for prozram |
but for programs 2 and 3, the actual contention for the {easible queue | and the
procecsor list is more than what is predicted. We do not yet know why the actual
contrntion is <o large, Programs 2 and 3 involve synchronizalion among many
cooperaling processes which become feasible almost simullaneously. This resulls in
some amount of temporal correlation among processors when they allempt to access
the fcasible queues and the processor list.

The model can be easily exlended for diffcrent numbers of processors (see figure
5.4 (M), We assume {hat the number and characteristics of the locks do nol change
when the number of processors is allered. This might nol be entirely valid since the
miscellaneous locks will undoubtedly be more diverse with more processors and hence
Mpise Will have to be in(:r‘eas;ed for betler prndidions.. We decided not 1o alter M, .-
however, since using the same M. . will give us a worse case bound on the blocked
time. N can be seen thal Hydra has done a very good job of partitioning the shared
objecls into different crilical sections. The processing power lost is very small even
for the 43 processor case. Figure 5.5 displays the effects of the blocking for program
3.

4

We can also investipate the effecls of reducing the number of locks in Hydra, I all
the ‘miscellaneous’ critical sections in Hydra were to be executed using just one lock,
consirlerable saving in storage will result since each object will not have to contain
space for a lock. Our mode! predicts (see figure 5.4 (b)) that the performance penally
of this change will be small for a 16 processor system, For larger systems, it will still
be advicable 10 have ceparate locks in each object. In the currem! implementation of

Hydra, it is possible {o achieve the necessary mulual exclusion without lhe use of
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PROGRAM 3

Effective
Processors
# Pc Number of proccssors
' Lost due o blocking
13 .
40 -
32 —
24 —
16 -
8 .
0 i '] L 1 1
1 T 1 T T |
0 8 16 24 az 40 43

Nurnber of Processors

Figure 55 Effects of Blocking for Program 3
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‘processor list® lock. In figure 5.4 (¢) we display our predictions if this lock is

; climinated. The time lost due 1o blocking will reduce as would be expected.

5.6, Conclusions

We have presented our measurements on the mulliprocessor conlenfion in accessing

shared data. The measurements indicale that less than 1 percent time is lost die {o

blocking in Hydra. This negligible amount of degradation is a result of parlilioning the

shared data objects into small segments thereby reducing the crilical section times. I
should be noted that Hydra uses the locks for synchronization at on'y one of several ;
levele, At higher levels in the sysiem, semaphores and other message operations are
used for synchronization which do resull in context swilch overhead but do nol cause

any lcss of time duc to blocking. From a purely performance point of view, Hydra

could have used fower locks with longer crifical scctions and it would still have had {
acccplable performance. This is an imporfant resull for the designers of fulure
mulliprocessor operating systoms as well as for those trying 10 adap! a uniprocestor
operating system to a muliprocessor.

We have also presented a central server model which predicts the abserved

e R )X T et

blocking behavior reasonably well. The model is used 1o extrapolate {he biocking
behavior in systems with up to 48 processors. E.ven at 42 processors, the degradalion
due 10 1>ck contention appears 1o be small. Olher interference problems at higher
levels in the sofiware [FULL76b] will be the Iimiti‘ng faclors.

In any real mulliprocessor operating syslem, the actual locking behavior will ssually

- deviate from {he simple contral server model presented here. For example, some locks

might always be execuled in cerlain sequence or some locks may be nesled inside
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olher locks. These siluations might have to be modelled as a network of queues. Qur
study does nol point oul any major deviations from a central server medel for locking

behavior of Hydra, bul the assumplions underlying our model will have to be verified

for other operating systems.
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6. Other Experimenis Performed Using Kimon

In chapter 2 we presented an enumeration of the interesting paramelers thal necd
to be studied in a general purpose computer system ( see figure 2.1). Many of these
paramelers are relevant for our evalualion of Cmmp and Hydra. However, it is nol
possible 10 investipale in deplh all the performance paramelers of  a complex
mulliprocessor syslem like Cmmp in a short time. We performed many experiments in
our study of these paramelers bul we discovered thal we did nol have all the special
tools necded for an cffective evalualion of a mulliprocessor system. In I.hir. chapler,
we present many specific e>:pnriment§ that were performed using the tools we had. It

.
is casy o get bogged down in the details of experimental setup in such a case study.
We have tried lo avoid this problem by giving a bricf description of the setup for each
experiment and describing the goal of the experiment and the interpretation of the
resull in more depth. The experiments are discussed along the system levels presented
in chapler 2. The system levels are :

1. Hardware architecture

2. Operating System design
3. Syslems programming
4. Applications programming
5

Installation management

6.1. Messurements at the Hardware Architecture Level
K.mon is ideally suiled for measurements al the hardware architecture fevel by

virlue of the facl thal it is capable of monitoring every cycle on the Unibus.

Mareover, ils sophisticated event detection mechanism can be used to select only the
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inMeresting cycles, thereby removing the need for recording every Unibus cycle for
post-processing. Most of our experiments at this level are directed al the cvalualion of
C.mmp. The mecasurements discussed here are:

1. study of memory inlerference in C.mmp

2. quantification of the cffects of the small address space on Hydra

3. measurements of the types of memory accesses

4. a compictie cycle by cycle trace

6.1.1 Momory Interiarence in C.inmp

C.mmp consisls of up to 16 processors connected o as many as 16 memcry ports
via a cross-point swilch. This arrangement leads to contention in the swilch when two
or more processors atlempl to access one memory porl al the same time. This
problem has been studied earlier by Bhandarkar [BHAN?3), McCredie [MCCR73) and by
Basket! and Smith [BASK76] using analylical models. Qur approach here is to actually
measure the effects of contention in Cmmp when it is execuling different workloads.

One large manufacturer estimates thal for each addilional processor in ils
mulliprocessor sysiem, 10 percent of the additional processing power is lost due to
memery _<onlcenﬁon. The loss of srocessing power depends on many faclors: the access
and cycle times of the memory, the time taken by a processer to issue anolher main

memery request afler one is salisfied, the distribution of memoery accesses to the

different poris and the amount of 1/0 trafiic 11 For the overall sysiem, these factors

1 For ow rludy of Cwmp, wn could ignore tho T/0 traffic sincz 1l is not sigmficant. However, of the
procecrors are equipped wilh cache memorioe, the processar to memory haffic is reducs:d and the 170 traftic
then hecores significant. The 1/0 traffic hae a pecolur chiraclonstic of accessing connrculive wde and s
effact nredo to bo connierad oxphitilly aspueislly for non.interlewved mimarier
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cannal be meased using Kinon since it can montor only one processor at a time.
Mareaver, since the memory subsystem in Cnmp operales ot a fasler rate than the
Unibus, we could nol use Kmon ( desipned for a Unibus) 10 monilor the memory
subsystem direclly. We could only monitor sccondary paramelers like the length of a
memery cycle as ¢«ecen by a processor.

The  average lenglh of a cycle increases with the contention in the swilch,
Unforlunately, we could nol measure the lenglh of a cycle direclly since K.mon is not
cquipped with a high speed clock nefcssary for such a measuwmement, Instead, Kainon is
provided with six onc-shot {lip-flops which chanze their state al prespecificd times (
0.5, 1, 2, 4, 14 and 50 microseconds respectively) after a memery cycle is initiated. By
cramining the value of these flip-flops at the end of a memory cycle, we can determine
the time bracket ( or a bin) into which the lenglh of that memory cycle falls. This in
eflr:s(.ti generates a crude histogram of memory cycle lenglhs and it gives an indicalion
of the contention. Even though im;ividual memery cycle lenglhs are nol available, we
can use lhe mean time value of a bin to approximate lhe average cycle length of all
the cyeles falling in thal bin 1o yield the grand average of the time taken to complete a
memcry cycle,

Our experimental study atlempls {o quantify the exlent of memery contention. We
calculated the average cycle lenglh for three diflerent workloads:

1. ldle machine: This measurement was made as a basis for comparison with the

olher workloads.

!\}

XSEARCH: This is a root finding program which creates 16 cooperaling processcs

execuling in parallel. All these processes exccule the same code bul they all

have individual copies of the code pages. Their aclivily is therefore distribuled
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throughout  the memery  porls, This workload i expected 1o produce
approximately the came contention as many independent users  execuling
different programs rebulting in heavy use of mest of the processors. The
average cycle time is naturally larger than the previous workload (idle machine),
3. SEARCM: This is the same program as XSLARCH, cxcepl all the 16 processes
share the code page, that is, they all make instruction fetches from the same
mermery port. A large amount of memory swilch contention is to be expected

with this workload.

We sampled 100,000 cycles at random for ea(.hvof these three workloads. To simplify
the cxperiment, Kimon was sct up to mcasure the lenglh of cvery memory coycle
generated by the P.host. However, since Kmon's oulput ratc is less than the main
memtry access rate of a PDP-11, the internal buffers of Kmon overflowed afler
collecting the cycle length for about 160 cycles. This gave rise to windows of
measirement  occuring  after  varisble times  thus  effectively  randomizing  the

measurements. The cydle lenglh histograms produced by Kmen are given below:
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Figwe 6.1 Lenglh of o Momory Cydle

Cycin length Workload 1 Workload 2 Workload 3
nneroseg

0.0 -05 0 0 0

0% -1.0 82439 55134 69153
1 -2 11401 13876 110601
2-5 7] 958 3314
5-14 79 3! 1542
11 -50 7 1 181

abnve 50 0 0 0

Average fenglh 0.8466 0.G834 2.335

microneconds

It is interesting to nole the significant 1ait for column 1 (the idle machine). Such a
tail can arise only due to memory contention. In owr data this effect is more
pronounced becayse in Cimmp, memory conflicts are arbilrated according {o strict
hardware priorily of the processors and our mecasurernents were made on a processor
having the lowest priority.

I can be seen thal the conlention for the sccond workload s quite small. This
.workload is ezpected {o cause the processors to distribute their memory accesses
uniformly across all the memery porls. Simple quecueing medels using a procc:sor
service time of 1.2 microseconds and a memory service Hime of 0.8466 microseconds (
using the average from column 1 ), give the expected average waiting time when all
the 16 processors are active to be about 1.2 microscconds. One explanation of the
small increase in the average waiting time observed in our study is that the length of a

cycle ic compased of a fixed arbilration time, a fived cable delay and a variable wailing
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time: for actual memery cervice. When two or more procescors request wervice from a
port, their arbilration {imes are overlapped and thus do nol contribute 1o any
lenghtening of their cydles. Another explanation is Lhat in workload 2, each of the 16
processers is provided with independent instrudlion and data pages and i i possible
that the whole system divides ifselfl imto 16 loosely coupied partilions lcading to a low
interference. Kanon cannot be used 1o verify these explanations since il is not capable
of ntasuring memory arbilration time or the memory access behavior of all the
processors at once. I is however, an interesting problem and we hope it will be

studicd in later investigations,

6.1.2 Small Address Space Froblem on PDP-] ]

Since the POP-1] has a small address space ( 64 K bytes), Ciomp uses a scl of
refocation registers to access its large physical memory. The virlual address space of
a PDP-11 is divided into 8 pages of 8 K bytes each for this purpase. There are 8
relocation registers (henceforth called RR's) corresponding (o the<e 5 pages. The RR's
are used lo translate a virlual address into a physical address [WULF72). C.mvhp
ulilizes 4 operaling modes ( kernel, user, 1/0 and unused) with 8§ RR's each.

C.mmp thus provides an environment for wriling large preozrams and gives us the
unique opporiunily of observing how the small address space of a POP-11 afiecte the
cxeculion of large programs. In any large program, some {ime has to be devoted fo
maintaining the RRs in order to make different pages of the program accessible. The
time ~pent doing this is clearly ihe price one has to pay for writing large programs to
run on a small address space machine. Qur experiment is designed to study and
quanlify this cost,

We used the Hydra system itsell as our test program. Even though the cost of using




a machine with a small addrecss space depends greally on the manner in which the
L ge physical memory s used 12, we belicve that lydra oxecoling a recasonable
workload is a good crample of a large program using a cmall address space. Hydra
consists of aboul HBO pages of instructions and dala, It uses the kernel RR' 1o access

theee pages in the fallowing manner:
Figure 6.2  Kernel mode Relocation Registers

Function

fixed. stack page

fived. common dala page
overlay., data page

overtay. data page

overlay. instruction page
fixed. common instruclion page
fixed. local memory

fixed. 1/0 page

NOURWN—OF

Note that only RR4 is uscd 1o access the overlayed instruction pages and RR2 and
RR3 are used for averlayed data pages.

The experiment is conducted in three parts, each giving successively detailed
pictures. In the first part, all accesses!3 ( read or wrile) to the Kernel FR's were
counted over the duration of a second along with all cycles taking place on the
wachine, all kernel cycles and all kernel instructions, This pives a general estimalg of
the cost since any access lo a RR is adirect resull of an atlempl o gain accessibilily

to a ncw page. In part 2, we trace individual accesses 1o RR2, RR3 and RR4 inslead of

12 For axorple, the coct in less of the memory is veed 1o siore liee veddore and all words in a page an
scannrd hofore swilching to anothor pi-pe.

13 It 1 importont not lo confuse an accosr lo 8 PR from the procram for the puipnte of inepecting or
modifying it wilh an acerre from the hardware machine for the purpose of {rant'sting & vetual addroses Hoere
weo ara concerned wilh the former.




juet counting them. This is used to see if the accennce 1o the RR. are uniformly
distributed in time throughoul the Kernel execulion or bunched togcther. Moreover,
since the data being read/wrillen is also traced, it is possible lo identify redundant
wriles , thai is, when the same value is wrillen backc into a KR, Tinally, in parl 3, we
trace each cycle taking place on P.host 1o determine how many instructions and cycdlea

are actually associaled wilh an access to a RR and to study in general the reasons

behind changing lhe RR's.
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Experimental Configuration:
Processor:C.mmp processor 3. (PDP-11/40),
Workioad: Hydra execuling XSEARCH ( see seclion 6.1.1)

PART 1

Figure 6.3 The Rale of RR Accesses.

The counts for the following four quantities are provided for
sixleen one second intervals:

Al Kernel Kernel Aceosses Inctructions i
cytlnaeycles instruclions to RR's per access

352000 107645 5226 2913 1552

367328 177341 73433 5130 14.3]

340005 78579 33568 1843 1€.21

350904 132763 BHo57 3138 16.27

30E878 115049 45256 3099 1557

325257 78218 33258 1837 1€.10

32023 77544 33161 1798 18.44

344202 86569 36759 2072 17.74

312900 92972 39239 2359 16.63

A01%17 16455] 68575 4729 14.50

325477 17706 49366 3196 15.44

3bez57 82876 35235 1980 17.79

371473%% 160413 66763 4595 1452

347500 77400 32973 1824 1£.07 a
372426 167739 69702 4768 1461
A00229 105853 68953 1653 14.81 i

The average number of instructions between RR accesses: 16.28

It can he secen thal a RR is accessed on an average of every 16.28 Kernel

instructions. Assuming one inslruction per access, this correeponds to an overhead of
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about 55 percent. I <hould be noled that this overhead considers only the execulion
lime penally. However, the wmall address space forces Hydra to use 32 bil addresses
internally { giving the RR value and the displacement within the page) to access many

roufines and data objects. We expect the storage space overhead to be significant

cven though it did not form a.part of our study. The next question is to determine if-

all the three variable RRs pet accessed with the same frequency. This is done in part

2.

PART 2
Figure 6.4 The Accesses to Individual RRs.
L
A Nttt e

(SR




9] o3
Cycle Relocation Kernel instruclions :
type resister cince last acceas
X
Write RR3 :
Wrife RR3 11
Wrile R4 69
Write RF2 2
Wrile RR2 13 ‘
Wiile RRA 56 ;
Read RR3 31 (
Write RR3 2
Wrile RR3 9
Write RRA4 2%
Wrile RRA 36
Write RR4 37 :
Read RR4 31
Rerad RR4 24
Write . RR4 1 ; exchange
RRe ad RR2 23
Wrile RR2 | ; exchange
Read RIFG 9
Wrile RR4 ) ; exchange
Wrile RR3 33
Read-pause RR3 6
Wrile RR3 0
Wrile RR4 20
Wrile RR2 5
Wrile RR2 35
Read RR2 7
Read RR4 26
Write RR2 6
Wrile RR2 31
Wrile RR3 12
Read RR3 4
Wrile RR2 0
Read . RR2 8
Read RR4 24
Read RR2 21
Wrile RIR4 1 ; exchange
Write RR3 44
Re ad RR3 97
Vu'l'i(t! RR4 13
Re ad RR3 3
Read RR2 3
Read RR3 1
Read RR4 3
Read RR4 {
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] indicates a redundani write .
Accecnes to BP2: 12
Acceanes to RR2: 14
Aceceses 1o RRA: 17

Average kernel instructions between RR access: 18.09

It can be seen that the measurements on this level yield an averape of about 18
Kernel inslructions per RR access. Comparing it with 16.235 oblained in part 1, one can
infer thal the accesses lo the RR are distributed umformly in time tlumlghoui the
Kernel execution. Quile a fow of the "wrile® accesses are scen o be redundant | Theee
arisc because il is casier to write the required valse in a FR than to check if the RR
alrcad - has lhe same value. It is interesting to observe thal the accesses are almost
evenly spread across the three RR's. If one of these three was found fo be lightly
used, it might have been advisable 10 use il permanently 1o access the most heavily
used overlayed page,

It 15 interesting to consider if the overhead of refocation register maintenance could
have been reduced if an exchange instruclion were available for the PDP-11. The
purpase of this instruclion would be {o store the currenl value of a RR on the stack
and 1o replace il with anolher value. In figure 6.4 we have marked all the RR accesses
thal could have been saved if such an exchange instruclion were available. It can be
scen thal 4 out of the total 43 accesses could have been saved. This would have
resulled in increasing the average number of kernel instructions between successive

RR accesses to 19.9 instructions.

PART :

N

We traced two different processors for this part 1o study ihe low level operations
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feading 10 a BR access, Processor 3 on Caamp has no 1/0 devices and the Kernel
execulion on it is limiled 1o executing the Kernel calls, Processor O on the olher hand,
has many /O devices and it execules many intcrrupt roulines. The two processors
indeed exhibil different lraces. Kinon can trace only a small nuaber of cyclre before
overflowing. This gives rise 10 a rather small window in the Kernel excculion to make
any peneral comments regarding why and how the RR's are accessedFigure 6.5(a)
displays a {race for processor O lo iustrale the instruction sequences leading to a KRR
access. Figure 6.5(b) displays a part of a similar {race for processor 3.

The lraces reveal two different kinds of overheads assoaiated with maintaining the
RR's. In figure 6.5(a), 10 instructions (6 through 14 and 21 through 22) are required to
call & subrouline in an overlay page. Figure 6.5(h) <hows that 3 instructions are
required 1o gain accessibilily lo an overlay data page and one inslruction is required
{o swilch back lo the previous data pape. In parts | and 2 we only loaked at the cost
associated wilth RR accesses, thal is, we did not explicitly consider the addilional cost
associaled with calling a subroutine residing in an overlay page. The overall cost will
depend on how many times such subroutines are called. We do nol have sufficient
data regarding thal to draw any general conclusions. However, in appendix D we
provide an exrcution trace of Hydra which shows that 2.5 times more instructions are
execuled in the overlay pages compared to the common code page. In the specific
case of the program being monitored in part 2 above, we observe that 17 accesses
were made to RR4 during 774 Kernel instruclions. Since two accesses to RRA are
required 1o access an overlay instruction page and relurn fo the previous pape, the
cost of the 17 RRA accesses is about 85 inslruclions. Similarly, the cost of the

accesses 10 RR2 and RR3 is 24 and 28 instructions respectively. The total cost of

i ¢ i e
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maintaining RRs is thus 137 instructions oul of 774 ( about 18 percent). U <hould be
noted that this is al best a rough estimale of the real coct involved in maintaining the
RRs. The study of cosls and benefils of using a 16 bil maciwne to wrile targe

progsams is an interesting topic for fulure research.
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Figure 6.5(a) Instruction Trace for Froceasor 0.

MOV RA,-(SP)
MOV R24,-(SP)
MOV R1,-(SP)
MOV 12(5P),RYE
JGR PC(5P)+
MOV o] 61064,-(5P)
MOV »a ]l 64066,~(SP)
SUIB w1 2,5P
MOV &R0, -(SP)
JOR 175,SLINK
MOV (10334 PO
MOV »n]64070,-(5P)
MOV wIRB)4, 0164070
JSR PC,»R0O
MOVE 6(5P),R0
BIC #177730,RO

jsave value of RA

isave value of RH

ipuf vatue of Rl on the slack as a parameler
iput parameler in R

gump 1o subrouling whose address is on stack
save value i RE2 on the stack

isave value in RR3 on the stack

;allocate B words on {he slack

;pass parameler to the SLINK

sump to «ubroutine SLIMK

move address of the rouline to be called to RO
isave the value of RRI on the stack

smove the new value into RRA

sump Lo subrouling whose addres  in RO
soet parameter from the stack

solear unwanied bils

MOV 26332(R0O)~4 | 810648 ;move new value intao RR2

MOV G(SP),IRO
BIC n20037,R0
RTS PC

MOV (SP)+,m»1164070
RTS R

MOV RO,R1

CLR R2

MOV 164064, 1 2(SP)
MOV 30(R1),10(SP)

MOV 10(SP),a5P
JSR RS,SLINK
MOV (15)+,R0
MOV #»a}64070,-(SP)
MOV »{R%)+,»0 164070
JSR PC,&R0
MOVB 6(5P),R0
BIC #4177740,R0

iprepare to return value of the ro . 1 RO

returped value in RO

sreturn from subroutine

ipap bkack vahie of RRA from stack
seeturn from SLINK

isome useful work

ame

imove value of RR2 into a local
smove vahue into local

;address 30(R1) is 4213Q, which containg 876100

NOTE: address 42130 uses new value in RR2
smove Incal to top of stack

sjump 1o SLINK

same sequence as above

; and so on,.....

MOV 26332(R0),/»1161064

MOV 6(SPLRO
BIC #20037,R0
R1S PC
MOV (5P)+,»1]164070
RTS RS

PRSI




Fipure 6.%(h)

(1) MOV @wR3,] AR2)

(2) MOV w0 16A06A,(SP)
(3) MOV @R4,PR2

(8) MOV 10(R?),7081 64064

(19) MOV &GP, 500164064

g€

Instruction Trace for Procecior 3,

;inot relevant

inave the old value of 1°P2 on the slack
icode to find the new value of RI2
doad the new valie in RR2

ioad the saved value of RR2

R Moy

|
;
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6.1.3 Sludy of memary access lypes

On the PDP-11, memery words can be accesscd mv ane of four accces modes: read,
read- pause, wole and write-byle, It is interesting o v culigate the relative frequency
of the uae of thewe modes. This measurewent 15 particularly cany wilh Kinos, since it
has four counters which can be prezrammed fo count the accurrences of these four
mode . Figure 6.6 presents the frequencics of the use of theee medee on different
modets of PDP-11 eveculing the same prosram. A POF- 1 model 20 neods two memory
cyclen { avead-pauce followed by a write) to wiile a ~alce n ity mam memory. PDP-
11 medel 40, on the other hand, needs oniy the wride ¢yde. Both models, howcver,
use the read-pause cycle for inclructions like mcrement and decrement. The
difference in the use of the read-pause cycle is quite evident in the fiqure. One of the
main uses of lhis information is in the desigh of cache memeries. Commp can berefit
from the introduction of a cache memery for each processor. However, becaune Canmp
iz a wulli-processor, the cache can contam only read-only worde. The perccntage of
read oycles is thus an important factor i determining the vatue ( re. the it ratio) of

such a cache memory.
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Weorkload: Hydra executing X3EARCH ( cee «ecchion 6.1.1).

Thee counts are made over one second dutation, The value« for

ten typicol seconds are provided below {or the two procerore,
Fioure 6.6 (o) Proceccor 3 (PP 1i/40)

Read Read-pause wrile Write-bylte Tolal

percent percent percent percent cveles
8H.61 2.52 10.76 0.580 208217
35.01 2.70 11.44 0.81 350160
8197 <69 1153 0.8) 323973
&h.as 2.54 10.68 0.0 IrEHET
SURIPS 2.79 10.52 0.&80 291302
5559 2.69 10.94 J7 390794
55.11 2.71 11.37 0.8 365535
8h.14 269 ° 11.3% 0.£0 326801
3559 2.79 10.82 0.0 2386232
£5.09 2.72 11.37 0.8l 3639EH

Mean 8632 2.745 11128 0.801
Figure 6.6 (h) Processor O (POP 11/20)

Read Read-pause Wiite Wrile-byle Tolal

percent percent percent percent cycles
79.2% 2.1) 11.08 0.56 247756
79.18 9.12 11.16 0.54 253720
78.97 9.2% 11.23 0.56 222460
78.60 9.40 11.47 0.56 240812
79.19 9.12 11.16 0.53 238226
79.02 9.19 11.26 0.52 227607
78.92 9.24 11.33 0.51 215309
79.06 9.18 11.21 0.583 2392657
79.03 9.22 11.17 0.58 249516
78.79 9.32 11.42 0.50 232767

Maan 75.997 9.215 11.248 0.536

6. A Comprehensive unibus cycle {race

This i one of the traditional measurements which is capable of answering many

W?""”Fm‘ N A Tt o T
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quc-bhions renarding the hardware acchdecture. Such a trace has been deccrtoed by
Bardaen [BORD7 1] for the Univac 1108, To pather wuch a trace, the hardware monitor
Fase o posse«s a very high bandwidth outpul device such as a fixed head drum or a
Large amount of core memary. Unfortunately, Kimon lacks wuch features and is thus not
very useful for thes measorement. I is however, posaible 1o record 160 conseculive
unibus cycles before the internal buffers in Kimon overflow. We could therefore gather
a trace conuisling of windows of 160 conseculive cycles which could still provide many
of the amcwers, The lrace was post-proceseed fo ywld the inalruction mix, frequently
occurmng instruction scquences, frequency of use of all combmalions of mode and
register pairs, a histoaram of the number of mewory cycles per instruclion, a
histonram of index values off the «tack register and a fwslogram of immediate mnde
operinds. Becauce of the lhnilation of gathering only 160 consceulive cyclng, we could
not study the branch distance behavior. Appendix C precents the resulls of this study.

It ~hould he noled that it was not possibic to oblain a trace consistling of more than
a few thousand instructions. We could nol perform this measurement on mere than a
few syslems. The resulls are nol very general and do nol compare very well with
those oblamed using other methads. Tor example, appendix C displays the instruction
mix chlamed using the fracc. 1 showz that the instruclion "MOV® was used only 16
percent of the time in the traccd insiructions. This does nol agree with the value of
31.2 percent oblained in chapter A, The discrepancy arises because, appendix C
reporls the results for anly 12000 instructions from one specific program. The rest of
appendix C should also be vsed with caution due to the same reason.

Future research should concentrate on obtaining longer traces of many different

programs in order to draw meaningful conclusions, Il will then be possible 1o ancwer
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many fundamental quetions regarding the PDP 11 arclitecture and i1 wall alo hetp in
the decign of new arcldectures, For example, i1 is mlerecling o delerming the ulibty
of providing immediate operands (3 or 4 bils long) in FDIP 11 inctructions. Appendix C
displays how many amall immediate mode operands are uced n the program under
study. Similarby, the histouram of index values off the «tack pomnler precents how
formsl paramciers passcd on the stack are accecacd by the prearam. fAnolher
measurement ( nol presented here) is 1o examine how often a "MOV' meatruction uaes
addressing mode O for its source or destination aperands. In all such cascs singie
operand LOAD or STORE mstructions would have heen «uflicient, There are many auch
questions that can be answered once the liraces are obtained. The statistical
experiment presented in chapler 4 can be used lo quanlify the variance of the

measnured quantities.

6.2. Qperaling System Design Lovel

As discussed in section 2.2, a hardware monilor is a uscful 1ool for measurements at
this iewel also. Many measurements can be performed wilhout allering the operating
system, bul the task is cimplified if the operating system can be modified {o supply
cerlam hard-to-obtain parameters to the hardware momtor, We will present only three
of the many merasurerments performed using Kmon since these are more genc.rnll‘/
applicable.

1. the execuiion profile

2. study of processor hardware pricrily chanaes

3. funclional trace of the vperaling sy tlem
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6.2.1 The execulion profile

Cxecution profile refers t.o the measurement of the frequency of execulion of
diffevent regions in a program. The technigue uscd is 1o wample the program counter at
randem and output ils value. This generates a list of absolule addresses winch by iteelf
cannct be casily interpreted by operating system programmers. This list is therefore

1 ot the program to gencrate the execuvhon profile. It is

post-processed using a map
then possibie to oplimize the heavily used porlions of the proaram or to aller the
alporithms used.

Thizre are two problems thal have {o be solved before such a measurernent becomes
feasibie. One problem 15 at the input level, where the hardware menitor has {o sciect
the program counter valueﬁ belonping to the operating syateme This can usually be
done by using address comparators to isolate the operating system region from the
machine’s address space. The opgrating sysfem can also provide this informalion {o the

hardware monitor using some signalling mmechaniom,  The second problem is at the

post-processing level, when the mapping between the operating system’™s routine

names and their abeolute addresses cannotl be determined because porlions of the:

operating sysiem are dynamically refocatable and / or overlayed. There are no general
solulions 1o this problem, except thal the operaling sy<tem can be programmed to
supply the new overlay number when it is brought in. For Hydra, we look at the value
being wrillen into RRA ( see section 6.1.2) fo determine which overlay pape is being

used.

14

a mwap arrocateon namos of the routines. in the program with thew abcolule adthanrr




Thee cxecution profile for Hydra is shown in appendin D, This measu ement helpe in
deciding winch roulings <hould be in the recident part and winch should be in the
overlay parl. 11 bhas also helped in sclccling roulines for optimization and for
implementation in microcode. It can be scen that considerable iime'ir. being wpent in
the register save/ restore rouwlines. These are nalural candidales for implementation in
miccacode. Qur analyses program also provides a list of routines ordered according to
the number of inctruction sampies falling in them. It can be seen thal many of the
commonly used routines ( e.g. ENQ , SELCTE and REQPRT in page 44, and MXEN.C in

e

page 23) can be moved o the fixed code page thereby avoiding changing REA every

time they are called.

6.2.2 Changes in the processor hardware priority

The PDP-11 has eight procensor priorily levels. Execulion at any of these levels can
only be interrupted by an interrupt occuring at a higher priorily. Hydra uses a
convention thal the user programs can execuile al processer levels from O through 3
and the operating sysfem execules at levels 4 ttwough 7. Differen! devices cause
interrupls al differenl levels from A through 7. Since device inferrupts have to be
serviced within a shorl time of their occurrence, it is necessary to restrict the
operating syslem execution at high priority levels. Kmon was uscd to detect high
priorily excculions excceding a cerlain threshold time. Since processor priority is not
availeble as a signal on the umbus, special probes were (onnecled to the (he prierity
bilsz in the processor. Kimon was programmed to detect the changes in priorily level
and record the time at which the change occured and the address of the first
instruction foilowing the change, The supervisory program on Psup detecled the

eveculions exceeding the threshold.
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Sample oulpul of this experiment is provided below in fipure 6.7, The addreze of
the inctruclion (indhading the page number for addresacs in the overlayed inctruclion
pages) following the rise in the priorily level is given <o that corrective action can be
direcied at the proper place in the operating system, In figure 6.7, alt the tugh
priorily execulion was caused by device interrupls and <0 we directly report the
device causing the interrupt in stead of giving the addrees of the intorrupt rouline.
The following measurement was performed o delect the high priority cveculion

exceoding one millivecond.

Figure 6.7 Chanzes in Processor Hardware Frionty

Prionly Pape Device How long, (microsec)
6 local Console T1Y 3675
6 loc al Line clock  29%1
(5} local Console TT1Y 3672
6 local Line clock 2822
() local Console TTY 49%]

6.2.3 Functional {race of an oparating system
The purpose of this measurement 15 ae to measwe the CPU and 1/0 processing
characteristics of PSX11-M for use as inpul to a simulation mede! of this operating
syslem. A sel of major processing functions were identified for use in the model. These
were:
Terminal input handling
tasi activation

lask iniliation ( wilh and wilhoul checkpointing)

15 Thi: avperimint was performed jeinlly by Dr Dermot Bredin of Digidal Bounpreant Corp anit the author
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task exccution { a Fortran program with subrouline calls, disk 1/0 and an
overlay structure)
task lermination

terminal ouipul handling

A number of places in the operating system code were then identificd «o that a trace
of excoulion at these places is sufficient 1o zive the time requited o perform the
above functions. One word in the operating system’™s data arca was desipnaled as the
hook™ word and code was introduced at these places to wrile a value in the hook
locatlion o uniquely identify the place. Kimon was sct up 1o detect any ‘wrile’
operation into the hook word ... d record the value wrillen and the lime stamp. All the
commands given to the disks were also monitored separately by lracine all the ‘wrile’
operations into the device registers ( see scction 6.5 for another cxperiment
performed by monitoring the device registers). The output of the monitor was then
analysed ta give a complete trace of activilies of the operating system and the disks, It
was necessary 1o re<drict the execution {o a sinele user execulion a cimple progran in
order 1o interpret the lrace successfully. A small parl of the {race 1s indluded in
Appendix . The informalion obtained wilh {his mecasurement can also be obtained

tracing the events in software. The only reason Kmen was used for {his measurement

was to introduce negligible perturbation in the operation of the operating system.

6.3. Systems Programming Level
Thie level includes the compilers and their run-fime systems, the ulility programs
and the file syslems, The execution profile { sce previous «cction) is again the me:t

important parametler at this level, This level is characterised by a slrong interaction
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vith the operating system. I is therefore interesting 1o monilor the service cally to
the operating sysler. Qn the POP-11, a service call is iniliated by cxecuting a special
instruction ( EMT or TRAP) and the operaling syslem returns lo the user also using a
special instruction (RT1 or RTT). Kumon was programmed to monitor the ereculion of
these instructions and record the lype of call and the time <tamp. This yields the
frequency of use of the different service calls and the hislogram of the execution tine
for each. In some cases, the cervice calls 1o the operating sysfem consume a sipnificant
amount of the lotal exccution time of a sysfers program. Il is somelimes possibic to
alter an algorilhm to eliminale cerlain service calls and hence a measureraent was
desipned ta give the lotal lime consumed by each call in a Fortran compiler.

Table 6.8 lists the instruction addresses in the Fortran Gompiler from where an

operating tyslem service call is made. An instruction address is uniquely identified by

; the pair (overlay number, address). For cach ins-.trdction address, the maximwum time ?

| spent in the operating system to compiete the call from thal address is gi;.‘(-.\n aleng

wilh lhb total time spent in the operating cystem due to a call at that address. The

total numhber of limes a call at a particular address is executed is also given to puide
the optimization of compiler algorithms,

The measurements were made for the entire duration of the compilation for a {ypical

user program. The Foriran compiler was the only proaram running on the computer

when the measurements were made.

[
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Figwe 6.8 Tune Concumed by Calls from a Forlran Compiler

Total lime of measurement: 21636 milhseconds
Total time inuide the compiler: 91 14 milliseconds = 42.1 percent

Overlay addrpss  maximum  lolal number Descriplion
number (octal) lime fime of calls
miCrosee  mMinrosee

an re ea e e a4k e m w e m % o e g . vm - - - on " o o = > hu tu ok o ¥ 4 2k = Se At aw o7 PY o o Pm M e oy e e 4R LS 4e 4uGe BE S% 4N BT T8 YE 4w su oh % em el CCAm LY oase i te e e

1 00f 600 2607 HIA1£2 276 QIO from the overlay handler

rool 6036 31569 3646073 27 QIO from the ovarlay handler 1
rool 10502 127928 2148581 265 QIO from the file system
rool 10640 140591 5735124 207 File syntem: Wait for 1/O completion
ront 10652 2456 114011 205  Fije systerm: Wait for 1/0 complction
0] 224606 645 5816 9 File initiaiization
¢ 27272 1570 39625 39 Assign logical unil numb.er
( citmibar 1o channe! number)
0 271006 1491 10328 10 Assign fosucatl unit number
0 17024 662 8565 13 Get task paramelers
0 17032 £38l 8711 13 Get task parameiers
o) 17114 565 7341 13 Sct seoftware trap vectors
0 17754 &8sl 85038 12 Get time paramelers
0 20230 375 5636 13 Ge! task paramelers
2 13640 1127 13021 14 Assign logical unit number
{ for {he file system)
2 13754 1202 14031 14 Assipn logical unit number

{ for the file sysiem)

Thws measurement can also be conducted in software, bul a hardware monitor can
gather this information independent of the operating system as long as the same
instruclions are used for cail .enlry and exil.

In order 1o help reduce the overall lime required for ccmpilation, the following
experiment was performed. K.mon was set up to monitor three slates while the
compiler was run stand-alone on the machine:

1. Compiler execution

2. Operating syslem execution
3. Wait for a device (usually a disk) to complele transfer

-
N\
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The ontpod of the evperiment includes the percentane of time cpent in cach of the
three ciates. A large wailing lime indicales poor overlap structure of the compilcr,
Even though in a mulli-programming system, a large wailing lime does not nececsarily
cavse decreased throughpul, it does increase the responae time coxpericnccdby the
uscrs.  This measurement can be used continually to quantify the improvement ( or
oltherwise) in the execulion of the syslems program as rodifications are made in the
program or in the operaling syslem algorithms. Figure 6.9 presents our resulls for the
Forleran compiler. It can be scen thal the compiler exhubils a poor overlap structure

spending over a third of the elapsed time waiting for the 1/0 completion,

Figure 6.9 Foriran Compiler: Overlap Structure

Total time of measurement: 33380 milliseconds
Total time in {he Haer stale: 18252 nilliceconds = HA.68 pereent
Tolal time in the non-user slate: 15007 williseconds = 44.96 percent
Breakdown on non-user time:
Total 1/O wail time: 11544 milliseconds = 3458 percent
Total operating system overhead: 1723 milliseconds = 5.16 percent
Total file syslem overhead: 1619 milliseconds = 4.57 percent
6.4. Applications Programming Level
K.mon is designed for PDP-11, which is a mini-computer and consequently, we were
not able to apply it to any large installation supporting many applicalions programs,
We therefore have limited experience in the applicability of a hardware nwonitor af this
level Instruction execution profile remains the most imporiant parameler even al this

level, The problems mentioned in section 6.2.1 are compounded by the fact {hat {he

execulion profile at the high levei language slalement level is requircd by lhe
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applicalions programmers and this is very difficull to oblain using a hardware monitor.
There are many ways to get around these problems. In our opinion, the use of a
hardware monitor for this measurement becomes clumsy and nol generally applicable.
The best solulion will be lo provide the neccssary facililies in the compilers and

operating sysfems,

6.5. Installation Management Level

As mentioned in the previous tection, K.mon has not been applicd o any large
installation cupporling many users, for which installation management is necessary. The
main performance parameler at this level is the cquipment utilization and overlap. We
therefore decigned an expc.riment 1o measure the overlap belween the processor and
any device ( we have restricted our altention to disks and drums only). We did not
consider number of jobs per day or the average CPU ulilization "as meaningful
me asurements with K.mon,

Since devices are nol accessed through channels on the PDP-11, we experienced
one simplification and one problem, The simplification is that separate probes are not
needed fo monitor the channel activily. The device registers are accessed through the
unibus and so they can be monitored with the address comparators in Kimon., The
problem arises in the definilion of ‘overlap’. In conventional machines, the channe! busy
and processor busy signals can be AND'ec logether lo deteel overlap. We defincd
overlap as the number of processor cycles belween issuing lhe starl read/wrile
command {o a device and receiving the completion interrupt from the device. Clearly, if

the processor executes a WAIT instruction immediately after giving the start command

to the device, the overlap will be zero.
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K.mon is «ct up as follows:
Event O: 1 microsecond clock
Event 1: 0 ‘write’ info any device register. When delecled, oulpuls time stamp,
register address, value being writlen, values of counters 3 and 4.
Event 2: fetch of an interrupt vector. When detecled, oulpuls fime stamp,
interrupt veclar addre<s( this identifies the device causing {he
interrupt), vaiues of counters 3 and 4.
Event 3: counts in counter 3 the number of unibus cycles initiated by the
processor.
Cvent 4: counts in counter 4 the number of all unibus cycles.
The trace is analysed by a program which interprels the commands given to the
various devices and effcctively reconstructs the device activily, It can, for example,
find oul which cylinder of a disk was accessed. The previous position of the disk arm
.
is available 1o the analysis program from its interpretation of the previous command,
hence it can determine the magnitude of the disk arm movement for every cormmand. It
can also determine the number of words transfered wilh every command, the time
taken lo complete seeks and transters and lhe ulilization of the different units of a
device. OQverlap is the difference between the value.s of counter 3 between event 1
(‘'go’ command being given to the device) and the following event 2 ( interrupt). When
a device receives a read/wrile command, it cannol accept any olher command until the
transfor initiated by the first command is complete. So the utilization of a device (
similar fo the utilization of a channel) can be defined as the total time a device was

busy divided by the total time of measurement.

Appendix Focontaing a sample output of this evperiment, Becoune of the low output

S

p=—rrprosee

H
.




Landwidth of Kamon, the trace consists of many windows from the actual oxeculion of
b4
the < yotem, This co 1d have been avoided by using a hybiid scheme where the fiming
> (%4 ) %4
and nverlap data were oblained with Kimon and fhe remaining dala obtained by
L
incerling suilable measurerient code in the operating sysfen. It is however advizable

to perform the experiment without medifying the operating syslem, since then the

same cxperiment can then be used for measurements on any operating sysiem.
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7. Conclusions and Further Rescarch

In this divacrtalion we have concentrated on the measurement and anafysis sroblem
of computer systems at the hardware architecture and the operating syctom kernel
devign tevele, In chapter 2 we ex. aned the performance parametors al various syslem
levele and discussed the applicoble measureient tools. Since our interest lics in the
phenomena covering the range of a few instruclions, the mosl appropriate
mcazurement loot for our purpose was a bardware rmemdor. A hardware menitor,
howewer, i3 a versahile tool apphicable 1o other cyslom levels as well, 50 somc effort
was devoted m studying the hardware montoring {cchmques in general. A brief
descriplion of our hardware monitor K.mon was presented in chapler 3.

Chapler 4 discussed a major cxperiment designed o addrecs the question of the
variability of the inctruction mix. The experiment was designed to quantify the
variance cauced by 3 faclors and to enable comparison of their effects. Application of
statistical experimental design methodoloptes is relatively new in the field of
performance evaluation. We hope our success will fringer more interest in the
scicntific design of cxperiments in this field. Ow measwrewments indicale that a
«latistically significant variation in the instruction mix is caused both by the application
area and the program in a given area but nol by the dificrent phases of execution in
the «ame program. it is therefore not advisable to atiempt lo over-optimize a
processor for a parlicular application area. We also quantitied an intuitively well
understood fact that all the addressing modes of the PRP-11 are not equally useful
For double operand instructions , mode 5 ( aulo-decrement deferred ) ia almost never
vsed. Many of the instructions were also shown to be seldom used. Theve resulls are

imporlant for the de<ign, implementation or emulation of POP-11 or similar procescors.
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Here too, as in any other maquiry, answers 1o one et of quedtions give rise to now
questions. Far esanple, two of our application areas uce lgh level languages ( Forlran
and Cobol). 1t wonid be interecting to investipate the variance due fo the use of
diflerent conplers, Inow «tudy, we have ignored this cficct by assoming that cimilar
machine inttructions will be used to accomplish {he tvpe and amount of real “work’
being demanded by a high level language statement, independent of the compiler used.
Bul this assumplion cerlainly needs to be investigated. I will also be interesting fo
perferm a cimilar experiment on a farger machine {or which Cobol compilere have been
availeble for many years and which possess Co.bo!--spccifr'c reachine instructions,

H s interestine o look :al the whole experiment i the finht of the workload
characterivalion problem. Intutively the different anphication areas reprecent differant
workloade since it is clear that each of these areas is doing a different kind of ‘work’,
The forlran programs are manipulating numbers for the purpose of solving cqualions,
the operating systemn are performing the processor and memory scheduling functions
whercas the real time syslems are responding to the cvents happenning in their
envitonments, Qur experiment is an attempt to characterize these intuilively different
workloads in terms of their inctruction mixes. U turng oul that a meaningful
characterization at such a low level is nol possible due to the variation in the
programs belonging to these arcas. This negative result should not be interpreted as
saying that a characterization at a higher level 1s not possible; in fact, future research
should concentrate on the next higher level of alomic ‘work’ e.g. in terms of
manipulations of higher level data structures like vectors, lints, process control blocks,
and «trings. Chapter H analysed the problem of soflware lockoutl for multi-processor

operaling syctems, In order to maintain cystem integridy, certain shared objects have




lo be acceaned by only one processor at a {ime, Such a wmutoal excduaen gives rvise to
critical sections of code which can be cxeculed Ly onty one precessor at a tane. The
tesulle in ateas of time if a proceesor has to wait to access a shared data object until
it becomen free. We showed that in Hydra, only tivee parameters control the tine loet
due o soflware lockout: the averane lenglhs of tbe cidical wectizng, the relalive
frequencies of use of the varwous shared data objecls and lhe number of procescors in
the syslem, In other cyclems, the critical sections might be nested inside onc anofher.
A different model will have 1o be evolved in these cases. We obaerved that Hydra hos
been aute successful wih respect {o the woflware lockout problem; lece than |
percent of time was losi due fo lockout even for a fairly Luny syctem. Hydra containe
many shared objects but the critical ~ection times have been kept small resalling in
smaller lost time. 1 might be interesting to consider other designs where fewer and
larger critical sections are used with (perhaps) some saving in complexity or fime
without paying 100 much penally in lost time,

Chapter 6 discussed other applications of Kmon. Kumon's limilations become
apparent in the sludy of the memory contention probiem and also in oblaming a
complele memory cycle lrace. Fulure hardware monitors <hould have provisions for
ineasuring mempry cycle times and for tracing cach machine cycle. It can be -een,
however, thal a hardware monmitor 15 applicable at all the system levels and this fact

should be kept in mind when designing fulure hardware monitors,
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Appendix A Survey of Hardware Monitaring Techniques

A.1. Introduction

A list of performance paramclers at various syclem levels and the varinus
cxperiments performed using hardware aeonitors to gather lhese paramelors were
discussed in the previous chapler. This chapler surveys the hardware monitoring
lechniques thal have been used in the past 1o perform these measurements. The study
of hardware momtoring syslems is broken down inlo three dimensions:

1. the cvent delection mechaniom

2. the event response specification

3. the display mechaniam,

Hardware monitoring sys«lems from the inilial I3 7090 momitors fo the current state
of the arl monilors are discussed along these dimensions.

Performance monitors for computer systems are avalable in many {orms, often
designed to mrasure very different parameters of an operational system. Performance
monitors can be broadly classified into two types. First, the hardware monitors capable
of scnsing bils and words of the computer system’s stalus. Second, the software
monitors capable of interrogating soflware structures such as queues and job tables .
More recently hybrid monitors have been used. These are hardware monitors assisted
by software on the mcasured. system 1o obtain information which is not available or is
difficull 1o get for a pure hardware monitor.

Various computer professionals have different reasons for initiating measurement of

a compuler system. These indude gaining understanding of the dynamic brhavior of a

system, observation and prediction of the effects of hardware and software changces,
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obtaining parameters for analylic or simulation modelling and model validation. The
performance paramclers at various levels in a compuler «yzdlem are also different.
igure 2.1 altemplzs fo characterize the performance parameclers at various cysfom
fevels and «ugeests the most valuable performance measurement tool for cach level.
Since the performance paramelers al any level depend on the parameters of levels
below ity it is possible to measure paramefers al any level using lools most applicable
to lower leviels. The hardware monitor therefore, is a useful measurement tool at all
syslem levels and an indispensable ool at the hardware architecture and operating
syslew kernel design level. Earlier hardware monitors were 1estricted 1o low sy«lom
levele bul most new cormercial monitors are geared lowards the inctallation manapcr
ancd applications prograommer levels. This fact should be kept in mind when comparing

past and present commercial hardware monitors.,

A.2. Functional Components of a Hardware Monitor

The: hatdware monitors have evob:ed over time from simple summary devices {or the
‘IBM 7020 through plug board monitors to today’s programmable monitors driven by a
mini-computer. Central to all lhese monilors, however, is the concept of an ‘event’. An
even! is the occurrence of a parlicular stale on the system under mcasurement. The
evenl we are interested in can also be a combination or a scquence of other events,
An evenl can be as simple as an occurrence of an instruction feich cycle or as complex
as the first operand fetch cycle atter execuling the instruction at a cerlain localion
while execuling a parlicular user’s program. Some monitors sample a slowly varying

input sipnal for being frue or false at a certain sampling rate. The occurrence of the

sampling pulse can be considered an event for the purpose of our discussion,
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Since events can be so (-m..'uplm.' and since different evenls need 1o be menilared for
different experiments, the event deteclion mechaniom is the modt impartant parl of a
hardware monitor. After detecting an event, the monitor can judt inciement a counter
or update a histopram, or lime stamp the event and store il in the secondary slorape.
In theory, il is possible to slore every event wilh ils time stamp and all the other
informalion and laler process the whole data. It is however much mere economical 1o
do seme selection in the monitor ifself and restrict the flow of data to only pertinent
information or some condensed form of the complete information. On the other hand, if
only the condensed form of information is abtained from the hardware wonilor, ils
utility is limited lo gross vmr;'asurements. Event response <pecification is therefore
another impartant aspect of a hardware moniloring sysiem. Finally, the sathered dala
has to be presented in an understandable form for the users. Some of the data can be
presented while the data collection is going on, some has {0 be post-processed by a
computer and some data. needs 1o be r.lo.rnd {o build a dala-base. How the data is
presented is imporfant for the monitoring system lo gain accoplance.

Before we discuss the characteristics of existing hardware monitoring systems, let
us bricfly cnumerate some of the experiments that can be performed using hardware
monitors. The experiments span measurements at all system levels shown in Figure
A.l. Some of the performance paramelers at the upper levels are best obtained using
a soflware monitor even though hardware menilors have been uscd lo obtain thece.
We have restricted our experiments to those that n.eed lo use a hardware monilor for
any cf the following reasons.

1. Events al machine cycle level are nol accessible o a «oftware monitor, e.q.

overlap of 1/0 and CPU, cache hits,
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Software menitors are oflen dependent on the eperating system. This makes it
necessary {o program scparate monitors for cach operaling syslem even when
the operating sylems are wrillen for the tamc machine. Morcover, some
soflware monilors require the language compilers 1o be modified.

An arlifact or perturbation is introduccd in the measwed syslem with any
software measurement technique. This arlifact cannol be ignored in some
imporiant experiments, en. mecasurements on lime crifical operating syslem

functions.
Some mcasurements are prohibitively expensive if performed in software, c.g.

counting instruclion usage or accesses {o an active data structure.

5. The hardware monilor possesses high speed counters and a high reselution timer

without which most counting and liming measurements are impossible.

The applicable reasons out of'these are indicated for each experiment in the fipure.




SIOUOK S.iemDlbH EWSM POWIO)18d mucmEm\_mnx—u 1y s4nEy
T (p8nuyuol) $43}51884 UOYEID|SI Buiney saunydew 0] Ao aiqedrdde &
mm_u\G\ 1&)s1882 20134 1.
SUC:IINLISU: 1BLLEM [8555800€ VENYalel) g D} 1 S22 'Su0:}10NJ)SuY >u:m1_aw: ss&30e
2835:232 UD:JESCI8S JO 48Gwny] | EulpL0dss248d JLEWEIOU; 'S0 ‘s3|d/d Asowspy c‘1 15)$1884 UOESOEY <P *
19 “ do;s ugtjsnuicut (2uy'g aousrbas ue:jsns)sut
&3usnbss Jo uoELn] 18l 1.e)s uoysnaisuy Suyae)s ] c ue JO uCijednd swlj <2
1en283u S a8d SEUES Y23&) uc:)onJ)sul
UZiIndlS: '3d G BUiELOEd 481Un03 g 0} EL:Euoieq
SSIDAT SESAS 30 JaGuntl ] SUSUCTSE 40 JusWSIdU! SBIOAD 'B{3AD AL0WEyy 1 sisAjeue [NSAN <3
{EAJEIUL BU) Jusns ue AgQ p&unod :
i8G £2)/.6-8):am pUR ‘SBYIM J3unod yses $314A0-8):4n pue ssdA} s
‘SEENEC-PESS ‘SDEBI JO JBGWNN  SUPUOESILI0D JUSEWUSIIU 8lim ‘ssned peadl vmm& 1 $58328 /faowsyy Am !

124

SjusAs Euyunc) 2
lllllllllllllllllllllll B T T T S T T T S S e T TP e P

(10U 20 U35 UOIIdRAISW) 2 X [lou

- S12A8; Ani0:lC 2 X 40 Y3318} Ul INAISL: ‘M)
¢8EeC © X S5CEdS SSS.TER b k0 Uz \.Eo o. dd elzds (yoes : &4o0.d 3
u: $88s8s2¢ JO go;;o A1s:Q $S8.pPE ‘SCIppE LoowBW (40 WCPUBL) BJIAD Asowap b S$5I3E AJOWIN <I ;
1EQUINU Aedano KEN 2 188ueYyd AejasnQ ‘2
SLCi2NU4JSU: JO 82LRLINIDD £51:3)9) 80 40 485N .einatjied
J0 Asusndsyy jo wesfs)sy US:UM WOLf SSEUDDE '] Uo1&y ug:)znUIsy] 1 Z 8)1404d U0:3NI3X] <q
srodce ¢} 2u:pLodde (uses 4o 4
SU0:IONLISU: JO UNOLYES.D piC¥ BP0OCO wepdes) Ys}s) uo:}onajsuj Z . X LeHINAISUY <8 1
sjw8ns Suicwes 7|

1

403w
azenpiey Euish
uc:ewlcp] Jo fedsig ssucdssl Juss3 UC:})I8)8P JudA2 10) uCSeSL Aseutiy Jusw:aedxy




5 o
o) '
s b
:)) ‘3 ™~ e ! "'
- £ 5 fvo hoo ?
. S T 66
v 5 R o ‘), TR ] oo
m 3] W - O T on ! na
.. I3 = b BNV, ) N v ] :‘ ' "
PR - £ iy
[ 1 - o o,
7 ° o
(e} B (o] : !
- 2 - = a
(o] ) e :‘ - !
Y o I
o ) '
M :.\'l N \
(8] (&) “ ;
P N I
s
1
- " '
- [, J
w 1 g%l '
(33 - (e e S L
. A -~ :)', e Y
ot 0. QO S ) !
LI O L .+ £ ¢ =
o, wL -e - =) -4 )
@ . TR, oo s £
< 18] 3 oF n v o no ! "
o & = ool o go o ©
Q. I PSRN AN o o ' ©
n v PR S I ) o | i
c) - < S AR « ) b
v c s a— -~ " — ! O
- a » L £ X I
'!). o 9 o @ 1 )
» N o & & !
1) o B v 2 ! o
= . o [V § - ——
i S S S ' L
> , - 3
= . S —
1
?::3 o 5 =
o o ! ] pe
ay T £ | 8 =
S5 0w Iy © S
s d 0 o W ! - e e
o © & v ! P - ¢ 5 ©
’ . 0 ¢ -
.4;.; -6 %3] o) f.' ! f\),;: O 194
» o O3 - ! g I v
- > » M © 0 0 i
o [ jodel ' O s — o ¢
e 3 o > c w <€
“ >0 @ - { Gt ~ 0
4 334 L
: o » 3 ] a7 " T bt
. O e (SIS - 1 5
e S g)’“mq ! P ol o s
. h N , ]
& 22 FF Gf 23 >
= Y Z : "-
X - .“- ' P oQ g L
— —_0N —a(\i [} o L -
: - O O ()
X E
'
‘ .
0 0 \ |
5 0 d ~ ' - T3] ©
. \ ) . !
-d -4 -
! -
. N « ‘
1
V
X '
l B
1
. Fon e ‘
' = e &
. Seks .
. » ~ ) E e o |
13} . '
" lﬁ "'.—’ !
m 3 .l 1 B
K¢ = “
i Y] ! . Y
” © ' o o
0 [\] ! = Q@
£ ' S
. o © g
g &% S KR8
s :
= a ' o (]
n ’” ’ A - ’
ot vy el = ! . n
] ™ ©
4




126

w .
v o
-]} - c *(r"_; o
s : o
’S 3; O m o
Ky 2 > S
£ y
ot ',{ B ay
Y - w
: 2 oW =
2 ) A m it
) 'A’) " m (." "
) s Lo )
e o " 3O
w0 s ) R
) @ .- *T a5
. b (o] 1~
) = ~ . -
-8 o " NS y
- [o N [y Lt
A ) P o r% 5
3 . 2 )
[ T i\ o £ b
ot A
- £ -
et 2 &)
] M o —— — ————— i
N B T
< Vo
: o - e
o e g_l o« R
v B " e 1A
m 1) .- VY f_‘ N T
» iy - s Al
- | ] o < Lk
‘) - :i‘ E u; ur (o ‘('I
\ ‘- bl oy Lo
A €3 e = o S
S 2 TP 0 ot
» ‘e A tc’ B5 fae]
: N . - -
.- o 3 - ) a : g
N - 1, "
e e ) b o
» RS O = IO .
[ : = = Y] 3
L 2 " X ey ¥
m N o 5]
s S o Q.
- o b 8
R = -
e K ! 5
o U o) —
oy T oo
- £ L‘; o < O ;"1
° i -
) L . " ~ et
) « o s 2 o
s R s © [ o y
R1 m o = 2 [
2 0 B e b Y »
1y w ar - R \L o - - ‘;
- o Do O s c
" s - s} o )
5 L £ .- B »
N 5 - 5} @
- g
(k¥ ] o v lé") o g
e >, 3 oH
b v 8] ‘L ‘P\‘
N ®
- ™ e . —— - -._.-.1
O
1]
-
T
o
& (3} =
> < ®
< ™ g
n
[:}]
c
K&
e
o
[ . £
= o o
< ') ]
W el mn -
s A7 (%4 ~.
wn Sr\ » b >
C. X'} ‘. C
O ow = c
.-
o R bt ,
o Q =2
@ u = £
W 4]
2. S 2 %
— O - pia
© = - c.
s (U] - o
(= o -3 hy
A A A &
- uh Ir
¥
e e e e e ————— et s - 4 ms

{ continued )

Figure A.1l

e v e




A.2.1 Event Dotection

The input to a hardware monitor is the various status bile, bue lines and registers in
the cy<tem under measurement ( called Phost). A hardware monilor vsually passively
senses the values of the inpul sipnals, High impedance probes are provided so that a
very wmall load is pul on the signal under measurement by connecting the prabe 1o it.

For a gencral purpose monitor, lhe probes necd lo be calibraled for the wpecific

voltape values i the Phost. There is also a problem of synchronization since the
probe input is not valid when the correzponding signal is changing its «tate.

In the early monitors, event detection was achieved with the help of a logic plug
board thal consisted of an assorted collection of gates, latches and decoders. It was
therefore very time concuming lo set up an experonent or o cwitch from one
experiment to another. A look at figure A.l will show that one of the most imporfant
paris of event detection is address comparison. Il is necessary to be able to detect lhe
occurrence of a specific address or any address in a given range. Il is also impor!ant
to detect particular values of data being acccssed ar thase of other prabe inputs, Most
modcern monilors are programmable, thal is, the function of the plug board is achieved
by sctling bits and registers in the monitor under the control ot the supervisory
compuler ( called P.sup). The hardware monilor designed and built at Carnegie-hMsllon
Universily is a programmable monitor ( called K.mon) . A brief description of K.mon
event detection is given below as an example of progcrammabie monitors,

The event detecting part of K.mon is shown ibn Figure A.2.

The event detector senses events at the unibus cycle( i.e. memory felch) level. It is

composed of two types of modules, comparators and bit masks. A comparafor has an

T~ O il
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internal register ( «el by Psup) and it produces two output signals, ‘input = register’
and ‘input < register’. A bil mask bhas two internal registers ( set by Peoup) . One
specifies the care/ don’l care condilions for each hil, the other specifies the expecled
bit pattern, A single output indicales if the inpul ~atisfics the specificd patlern. Signal
inpuls for the comparators and the bil masks are arranged in four groups: unibus
address, unibus data, miscellaneous probes and control. The control group includes
unibus control signals. In the current implementation four events can be defined
simut anenusly.

In some commercial montors, the plug boards are removable and pre-wired plug
boards for certain standard experiments are provided. ADAM [HUGH?4] has an
iniertﬂ;iing way of event delection. It has a monitor register which holds all the
selected inpul signals. The monilor register is suitably masked and then compared
simullancously to sixty four bil patlerns in a content addressable memeory. The
lnatclﬁng palicrn delermines the cvent thal has happened.

The Waterloo hardware monitor ( RCI-lMIMORG?S]) implements a very sophisticated
plug board in which some of the connections can be made under program control. For
example, it contains a programmable 16 X 4 switch matrix which allows up to 4 of its
16 input signals to be available as its output. I also has programmable combinalorial
logic units which accept 8 input signals and yield one output signal wh‘ich is any logical
function of the inputs. There is a hardware unil {o detect (he sequences of events. In
addition to the above, it has comparators, interval limers, evenl/time counters and
character delectors (o aid event detection. Even though the hardware components are
programmable, the inpuls to these are usually {rom the plug board and the outputs are
also usually available only an the plug board. This arrangement allows small changes in

the cvperiments lo be made under program control without manual intervention.
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A.2.2 Ewvant response spacification

When an event s detected, it is somelimes sufficicnt to just record the fact whereas
al other times, it is necessary to record more information like the address or data that
causcd the cvent to take place. A time stamp and the values of internal counters may
also be required for later analysis, In the carly monitors, only summary type
informalion was made available. So the only response to any event was to increment
an inlernal counter. This is sufficient if only gross average values of the mrasured
quantilies are required. If however, one needs 1o generate histourams for cenctructing
analylical or simulation models, more delailcd informalion has 10 be oblained by the
hardware menitor. In Kunon, ;vhcn an event is detected, up 1o 9 words of information
can be oblained. These are: address, data, probes, macellaneous signals, clock vatue
and four words giving the rumber of times each of the four events has occured so far.
Moreover, two internal flags can he set or reset lo facililate detecting a sequence of
events. Kimon thus acts like a filler which detects certain interesting cycles out of a
vast number of unibus cycles and then makes selected inputs avaitable. This
arrangement is necessary for experiments involving lracing of events. In a trace mode
the input informafion afong with the time stamp and other information internal to the
monitor iy transfered dircclly 1o the output slorage medium,

The Waterloo monitor has a hardware time stamp register which can record 12 bits
of ‘environment’ informalion plus 24 bil time when any of the 8 selected events
happrn. In addition it has a scquential event detector which can be programmed to
recopnize a sequence of evente given as a regular cxpression,

The Tesdata MS monitor employs a 'mapping’ scheme of counters which uses 8
pay 14
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counters 1o count the occurrences of the 8 possible combinalions of two inpul signals
automatically. This scheme is uscd lo determine the overlap between CPU and a
channel. The twa input signals are ‘CPU busy’ and ‘Channel busy’ sampled at a certan
rate. The 4 counters then count the occurrences of both CPU and channet idle, only
CPU busy, only channel busy and both CPU and channel busy.

H has been recopnized thal quile a few of the cxperments fall into the calegory of
generating histosrams. so some of the new monitors are capable of gencrating
histonrams in hardware. This reduces the amount of dala poing 1o the P.sup thercby
removing the cause of a major botlleneck, The paramelers of the hislogram like lhe
upper and lower bounds are gencrally pregrammable from the P.sup. Another f{eature
thal can be quile useful in cerfain experiments is a dynamically read/wrilable internal
register. Such a register allows dynamic alleration of an on-going experiment in
response to incoming data. As a response to an event, this register can be loaded
with the current address or data values or the clock value. This register can
subuequently be used in event detection and il can also be oulpul when some other
event is delected. This register can be used for tracking relocatable pieces of code
and other measurements. If it is possible to store time ditferences in this register, then
determining the maxiQO time difference between (wo evenis becomes casy.
Hughes[HUGH74] used this technique lo determine the maximum duration of the

interrupt disabled mode in a system.

A.2.3 Display of Information
This is anolher area where a lot of progress has been made since the carly
.
monitors. For a summary lype monitor, all thal is really nccessary is to display the

conlents of lhe couniers, preferably in decimal. For second goneralion monitors,
P y
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however, it is convenicnt to have a tape or disk slorage tnit and [/ or a supervicory
proce ssor for on-line display. Farly commercial monifors ueed {ape slorage and pont-
proce ssing {0 gencrate reporfs, The dis.ad'vemtase is that cxperiment set up errors arp
not detecled until after the post-processing is done. Most medern monilors are
capable of generaling some real time display while also storing data for post-
Proce ssing.

Some standard oulput formals have evolved over time. The lrend has been to
provide data in a pictorial format to make it easy lo comprehend. Histoprams are a
geod cxample of providing a visual representation of a distribulion funclion. Gantt
profiles have been used to summarize resource ulilization and overlap ( see fisure
A3). Anoiher representation of recource ulilization is provided wilh a "Kivial graph®. |
is obtained by plotling equal number of "good’ and ‘Lad’ indicators of performance on
alternate axes in a circle ( cee figure A4). The Kiviat graph has a iot of visual appeal
because all the utilization data is available at a glance and the shape of such a graph is
an indication of the ‘goodness’ of a computer systeni,

Since quile a few ewperiments use a histogram o display information, some
cormmercial monilors are equipped with special hardware to display histograms directly.
On the other hand, some monitors like the Remole Controlled Hardware Monitor at
Waterloo[MORG73] transfer information to a centrat computer over phone lines for
post-processing. n some other experiments, information is gathered in a data base for

long term trend analysis.
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A.3. Comparison of some Hardware Monilors

A few of the old and new monitors are compared below. A few commercial monitors
( eg. SUM) are no longer available and are therefore not discusscd.  Detailed
intormation could not be oblained regarding the Univac 1108 monitor and a commercial
monilor supplicd by Computer Performance Instrumentation, Inc.  The monitors
discussed are listed below in approximale chronolagical order:

1. 7090 poriable monitor [184463)

2. Mamory bus monilor [FRYEZ3)

3. Neurotron Monitor [ASCH7 1]

4. ADAM [HUGH? 4]

5. Kumen [FULL73]

6. RCHM [MORG73]

7. Dynaprobe 8016 [DYNA?6G]

8. Tesdata MS [TESD76]

SRV S TN -




A Survey of Current Monitors

Figure A.5
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A.4. Trends in the Hardware Monitor Develapment

The advantages of providing programmable registers in the hardware monitor over
the earlicr manual plug boards are obvious. With programmable registers, experiments
can be modificd quickly if in error or if incoming data so requires. In fact, going one
step furlher, the hardware monilor or the host machine can be allowed {o set certain
internal registers ( e.g. comparators or hold registers). This feature can be used to
keep track of a proaram which can dynamicaily move in the main memory of the host.

Early in the development of hardware monitors it was realized thal it is much more

N PES M . . .
convenient to use a minicompuler 1o perform some of the fogical and arithmelic

functions rather than designing lhe hardware to do them. Morcover, the minicomputer

can be used lo slore the data on secondary slorage as well as communicaling with the

user. Depending on the rale of data gathering, the minif.omplltcr can perfdrm some
cofnp.1cti0n and then display or print preliminary resulls whiie the experiment is still
going on.

If one is monitoring a processor on a chip, the input to the monitor is sevt-.‘rly. limited
to the bus coming out of the processor. None of the internal status bits are accessible.
In such cases, a self monitoring feature can be provided for microprogrammed
processors. The microcode can have hoo'ks at interesting places to enable one to insert
measurement microcode. Such a monitoring syslem has all the hardware data in the
processor available and by careful overlapping of operations it can be made to cause
Iess' perturbation than a pure software monitor. This might be a way to measure
microprogrammed processors on a chip. The disadvantage is thal the status bits in the

peripheral devices are not directly accessible.

) R : : . S e N “ , B ; i .
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Thrre is a distined trend in providing some proccssing inside the hardware monitor.
The examples are histogram generation or moment calculation. As more (ommon
proceesing requirements among  different experiments  are identified, il will be
justifiable to put them directly in hardware. Similarly, as common display farmats are
discovered, they will be put in hardware or will be supplied as standard sel of
programs. There has been some progress in defining a measurement languape. Such a
language will allow the users to specify the events lo be delecled, the information o

be gathered when an event occurs and tinally the format in which the information is lo

be displayed.
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Appendix B: The Instruction Mix Experiment

This appendix presents the outpul of the instruclion mix experiment in detail, Since
chapler 4 identifies "MOV' as the most frequently creculed instruction, we procent the
fractions for the execulion of the "MOV" instruction in cach of the segments. Similar
informalion can be obtained for any other instruclion or addressing mode but we will
not reporl il here for brevity. It is interesting {0 observe the farge variation in the
fractions for the MOV instruction. The fractions range from more than 0.5 in program 1
in area B 1o 0.0001 in program 4 in area 5. In fact, it can be seen thal program 4 in
area b consistently uses fewer MOV instructions than any of the other programs. We
traced the reason for this behavior 1o the fact that it is a hand-written program which
spends most of its time in a small light containing very few MOV instructions.

In chapter 4 we reported thal the variance belween sezments is small compared to

the cther two sources of variance. The data presented here clearly brings out this

fact for the MOV instruction.

e
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Fractions for the MOV inctruclion

APPLICATION AREA 1: Scientific Forlran Benchmarks
Program #

1 2 3 4 5
Segment o

1 .334 317 438 343 332

2 .393 324 .469 342 324
3 .38 320 465 329 318
4 392 318 432 369 .332
5 389 313 466 343 328
6 369 320 440 326 318
7 395 323 .70 345 313
3 387 208 467 340 325
9 388 322 426 332 347
10 391 318 469 .340 .356
11 395 371 454 358 364
12 385 317 A5 337 .361
13 392 322 468 338 302
14 336 316 .439 368 346
15 .39 327 468 341 329
16 .389 299 .466 340 .335
17 368 317 .432 333 336
18 391 321 464 361 316
19 386 317 .443 346 322
20 390 324 462 336 319
21 386 323 .469 355 335
22 391 327 .422 335 316
23 .387 329 475 .336 .356
24 393 323 468 349 335
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APPLICATION AREA 2. Businese Cobol Zunchmarks
Program a

i 2 3 q 5
Seament #
1 .199 3006 .219 247 247
2 .169 312 .256 263 .258
3 .193 .302 256 .223 223
4 152 298 275 271 271
5 195 302 288 219 .219
6 200 303 247 .281 .284
7 203 Ath] 231 218 218
8 .250 .304 .189 215 215
9 188 .303 210 .275 .27%
10 221 206 239 270 .270
11 185 .332 226 .196 196
12 .188 323 .250 272 272
13 161 .23 211 .289 .289
14 .194 200 229 .197 197
15 201 216 .223 .219 .249
16 194 .290 212 272 - 272
17 .242 265 .203 .233 .233
18 214 215 225 .276 .276
19 .193 252 .249 .288 .288
20 211 .288 .253 .289 .239
21 .181 274 .24] .294 .294
22 .190 321 .249 .284 .284
23 .166 305 .253 .289 .289
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APPLICATION AREA 3: Operating Systems

Pragram «
§ 2 3 4 5
Seament #
1 328 313 309 306 250
2 310 294 .324 309 256
3 240 278 314 307 254
4 295 291 323 304 258
5 408 329 313 309 253
6 306 306 313 303 249
7 237 305 326 313 253
3 35) 313 321 294 256
9 336 302 332 294 219
10 286 336 315 317 256
11 308 312 319 311 251
12 323 290 319 323 251
13 337 313 329 296 255
14 213 28] 317 308 267
15 330 307 332 307 259
16 106 285 336 315 253
17 296 3)1 319 323 259
18 249 298 .306 312 254
19 401 319 323 305 252
20 335 322 312 222 252
21 239 306 .333 308 262
22 343 292 .323 293 257
23 400 313 315 294 255
24 311 312 .323 322 236
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APPLICATION ARCA 4: Systems Programs,

Propram u
1 2 3 4 : 5
Segment #
1 .281 339 323 .163 .383
2 238 338 320 197 407
3 .273 343 318 .208 398
4 277 . 343 .32) .231 .407
5 281 .350 318 .229 .A05
6 282 331 .241 .187 399
7 .284 .35} .20 165 .400
2 .285 351 .185 .160 .403
9 .279 347 131 .182 390
10 286 347 135 372 395
11 .282 .314 126 .202 .405
12 .28 350 321 .68 412
13 .289 352 321 175 .408
14 277 313 320 .19% 06
15 277 350 321 210 .40%
16 275 311 322 .187 412
17 .284 341 .323 .184 .40%
18 .282 316 313 .185 394
19 .281 3414 .147 194 389
20 279 340 .206 .190 381
21 279 348 122 .183 379
22 284 .339 .138 179 386

23 276 .330 .133 .187 375




113
APPLICATION AREA 5: Real Time Prosrams
Program u
1 2 3 q 5
Seament #
) .A470 A53 354 .108 403
2 A5 A50 317 .166 .406
3 862 449 361 107 806
q 165 451 348 .140@-2 .398
5 460 ° .448 350 A50a-3 .403
5 .474 Aa7 391 .2509-3 .392
7 475 .A47 .358 .000 .388
3 A74 A47 .338 .100a-3 .383
9 465 AB2 339 500a-3 .386
10 A0 A53 345 239%-) 385
11 472 A5 322 381 375
12 .477 457 307 A16@-}) .382
13 .459 A52 .345 .432m-1 .397
14 .490 446 .385 126 .402
1853 .493 448 341 .129 .408
16 487 .443 363 .149 .399
17 .493 .A50 379 .129 412
18 453 445 .357 110 410
19 501 449 387 .138 410
20 .499 .A59 .356 149 .405
21 514 .454 .385 .140 .409
22 512 447 361 .124 .401
23 437 453 .358 A58m-1 395
24 471 .453 .359 137@a-1 .368
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Appendix C: Comprehensive Unibus Cycle Trace

In this appendix we present a sample oulpul from our analysis program which
analyses the Unibus cycle trace as discussed in section 6.1.4, Because of the
bandwidth limitations of Kmon, it is difficult to collect a trace consisting of a large
number of cycles. In this example, we were able to coliect only about 20500 cycles
during 30 minutes. It should be noted 1hat 1he data presented here has been obtained
for a single program and we cannol draw any general conclusions from this data. In
fact, this parficular {race shows that only aboul 16 percent of the instructions were
MOV's whereas in chapler 4 we saw thal the MOV instruction is erecuted on the
arerage about 31 percent of the time.

Once a Unibus cycle {race is collected for a large number of programs, it will be
possible to answer a variely of imporlant design questions. The analysis presented
here is intended to give the reader an idea of the kind of analysis thal can be done

with such a complete cycle trace.
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Total Unibus cycles in the trace: 20520
Total cycles initiated by the processor: 20520
Breakdown according to the kind of Unibus cycle:

read read- wrile write byle
pause
17844 552 1959 165

Total instructions in the trace: 12184

The instruclion mix:

name 7 instr name 7 instr name 7 instr name 7 instr

mov 16.111 jsr 3.324 ris 2594 cmp 2.51]

beq 3.792 add 3.037 movb .755 bic .230

imp 213 sub 2.142 hne 2.487 tst 2.938

br 2577 asl| 6.566 dec 6.328 bpl .140

bitb  .131 ble 501 inc 1.182  cmpb 435 {
clr 2.421 bge .197 bil 1.543 bis .066 b
nop .000 rit 008 awal 1.428 bal 5581 ]
rol 4087 sxt 000 flot .000 bve .000

clrb 542 sheb .000 mfpd .000 bish 1.888

wait .008 neg 295 asr 3.357 mul .000

sob .000 bvs +.394 comb .000 tstb .386

mtpd .000 rti .04]) ade 1.773 div .000

bce 2.429 incb 074 rorb .033 unus .000

bpt .000 spl .000 she .886 mark .000

ash .000 bmi 057 hes 3.940 decb 090 ‘
rolb 287 iot 016  com 008  mfpi .000 7
ashc .000 bhi 1.362 emt .000 emt .000

emt .000 emt .000 trap .000 trap 000

trap .000 trap .000 negh 000 asrb .000 .
reset .000 condl 025 cond? .000 cond3 361 ' i
cond4 .000 blt 558 ror 7.855 mipi .000 %
xor .000 blos .008 adch .000 aslb .000 '
bich .000
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Mode register stalistics (or single operand instruclions

mode Register number
number

0 1 2 3 4 5 6 7
1) 1242 1007 263 317 630 652 0 o
i 33 2 0 7 0 3 65 0
2 0 0 0 0 0 0 70 0o
3 o 0 0 0 0 0 88 21
4 0 0 0 0 0 0 103 0
5 0 0 0 0 0 4] 0 0
6 10 20 9 120 0 3 66 560
7 0 0 1 0 0 0 75 o
Source mode and register statistics (or double operand instructions
mode Register number
number

0 i 2 3 q 5 6 7
0] 280 175 581 294 107 94 29 0
1 2 30 27 19 - 57 43 6 7
2 0 0 0 0 0 3 423 404
3 0 0 0 0 0 3 0 64
4 0 0 0 0 0] 0 3 0
5 0 0 0 0 0 0 0 0
6 16 52 10 0 1 5 372 383
7 0 0 0 0 0 0 21 q
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Destination mode and register statistics for double operand instructions

mode Register number
number

0 1 2 3 4 5 6 7
0 6438 515 289 170 222 116 16 1
1 9 16 69 87 42 67 132 0
2 0 0 0 0 0 0 10 201
3 0 0 0 ¢ 0 0 0 a9
4 6 0 0 0 0 0 454 0
5 0 1 0 0 0 0 0 0o
6 13 2 7 1 0 1 144 233
7 0 o 0 0 | o 6 0

- - - R W - D D = o o e 6 W A S e 4 g B - -

o

e — e




147

Histogram of number of Unibus cydles per instruction

# OF SAMPLES 11854 MEAN 1672 ST DEV. 1.038 {
MINIMUM 1 MAXIMUM 8 Total 19818
RANGE COUNT :
-inf TO 1] 7591 EREETRREERRLETERLERRR !
( 1TO 2] 1735 heE :
( 270 3] 1530 Py

{ 310 4] 848 %

{ 4TO0 5] 131

{ 5TO 6] 14

( 6 TO 7] 4

( 770 8] 1 . ;
( 87170 9] 0 ‘
( 970 10] 0 '
( 10 TO +int 0 i
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This information can be used to decide the ulilily of providing a small field in every

\
!
!
f
E Histogram of the index values off stack pointer:
t
E instruction lo specify the parameter number off the stack pointer.

. # OF SAMPLES 578MEAN 23.159 STD DEV. 172.455

MINIMUM O MAXIMUNM 3072 ' Total 13386

RANGE COUNT %
§ -inf TO -16] 0 I
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(1470 18] 0

(15 TO 16} 28 5k

( 16 TO +inf 123 T R T
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|

Histogram of the immecdiate mede operands: h
i
This information can be used lo decide the ulility of providing a small field in every |
f
|

instruction to specify small immediate operands.,
.
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| Histogram of the index values off regislers other than SP
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Appendix D: The Execution Profile for Hydra

The following is the execulion profile of Hydra measurcd while execuling a parallel
root finding program utilizing kernel semaphores for synchronization. The Hydra
kernel instructions were sampled at random using the hardware monitor. The changes

in the overlay code page were also monilored with the hardware monitor.,

Relocation funclion Number of instruclions
register

0 stack page 0

1 common data 82

2 overlay data 0

3 overlay data 0

4 overlay code 10840

5 common code 2987

6 local memory 2739

7 device registers 0

Tatal number of instructions sampled: 17643

The above table shows some instruclions being executed out of a data page via
relocation register 1. This is not due 1o any error in the hardware monitor but Hydra
implementors found it convenient to execute some instructions from a page which
otherwise contains only common shared data. Hydra consists of about 50 pages of
instructions and data. By monitoring the changes in the relocation register 4, we were
able to identify which of the overlay code pages ( from page 7 through page 47 in the
following listing) was being accessed through that register. In the following listing,
routines that do not have any samples in them are suppressed. For the common code

page (page 6)however, all global rouline names are printed.

Page number 6 Total Instructions: 3987

address rouline number of samples
name

120000 Csus.C )

120006 ERRPRO 0

120232 HLNK.C 0

L et 2L N T I 4




120252
120274
120354
120460
120502
120532
120574
120632
120674
120732
1207234
120736
120740
120742
120744
120746
120750
120754
120756
120760
120764
120766
120770
120772
121006
121030
121062
121074
121076
121124
121162
121266
121330
121374
121430
121460
121462
121502
121740
121770
122010
122046
122156
122250
122410
122502
122562
122646
122706
122766

SLINK
SEHY] |
SEHYOL
SEHYXT
TTTCC
TTWRIT
OUTCH
SIXOUT
MOVE
MOVE16
MOVE15
MOVE 14
MOVE13
MOVE12
MOVE1 1
MOVE 10
MOVES
MOVE?
MOVES
MOVES
MOVE3
MOVE2
MOVEL
MOVEO
MOVE4
MOVES
PGCM.C
STCMC
GETPAG
RETPAG
SETHOR
GTSZ1
GTSZ2
GTYPI
GTYP2
IDLE.C
IDLEDI
IDLE
IDLEP
LVEC.C
LVECP
FPCMC
OBJSHR
OBJDEL
COBJDE
OBJADE

OBJASH

FPSEM
FVSEM
FCSEM
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363
0
0
)
0
0
0
0
7
1
0
0
0
0
0
1
1
1
0
1
1
1
0
7
0
27
0
0
0
0
0
0
0
2
0
0
o
0
0
0
0
0
60
65
1
v
0
2
3
0




123026
123066
123126
123240
123204
123322
123334
123346
123350
123534
123564
123626
123660
123722
124014
124106
121156
-124160
124270
124412
124526
124564
125020
125064
125242
125306
125550
125614
126000
126044
126224
126270
126370
126556
126560
126630
126712
126724
127032
127072
127132
127172
127232
127272
127332
127372
127432
127472
127532
127572

FCMUT
FEMUT
FVMUT
WHTOBJ
FPCHK
WHTTOT
WHTACT
Froo
TYPEMA
SHRTYP
OoBJTYP
FTYPE
TYPINC
TYPDEC
ATYPDL
WHTYPE
TYHS
DPART2
DFART]
ROPRT2
RDFPRT1
DATAZM
DATAIM
RDATA2
RDATAL
XITEMZ2
XITEMI
ITEM2M
ITEMIM
WITEMZ2
WITEM]
DATALE
ITEMLE
MSCM.C
FIRSTO
DOCHKS
BADMEM
ITCM.C
TYPOBJ
PROCOB
LNSOBJ
POLICY
PRCSC:3
PGORJ
SEMO13)
PSEMOB
DATAQB
PORTOB
DEvOBJ
UNIVOB
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127632
127730
130042
130110
130122
130240
130352
130502
130562
130666
130754
131046
131136
131172
131212
131470

131650 -

131736
132054
132136
132216
132240
132414
132412
132462
132502
132612
133004
133020
133034
133106
133136
133342
133356
133416
133460
133552
133642
133670
133724
133772
134106
134110
134130
134134
134154
134216
134234
134354
134710

EQTYPE
EQREF
FITYPE
SITYPE
FPRT]
FPR12
ANDRTS
ORRTS
MOVRTS
RTSBST
CHRTSB
CHKRTS
PASSIT
MAKNUL
SHARIT
DLTIT
SETMPL
MKITHA
MAKITh
oBJC
ITCM.P
CDIT.C
CALDER
CKMP.C
TSTLOC
LOCK
1P17
BDLOK
BDULOK
UNLOCK
PCBCUR
PRCSID
INCRIT
DNCRIT
PMUTEX
CONDIM
VMUTEX
2]
ConDP
v
CKMP.P
DMNC.C
TGSTOM
SIGE.C
$SIGNI
SENABL
KL61.C
SIX005
KM6 1.C
KM61.P
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134734
134736
135034
135224
135250
135416
135516
135600
135632
135650
136324
136414

Page number
100000
100406
101066
102404
104174
104362
105006
110456
112220

Page number
100002
100720
104344
105016
106566
115024

Page number
107754
110524
111312
112106
112772
113742
115202

Page number
101126
102420
103676

10

11

12

165

KCHK.C
CHKADR
ASA?7.C
UADRC
CHKUAD
CHKUBY
USERIM
USER2M
SETUD!
UADR
GETGNA
READGC

=3

OCONOOMNONDOEGO

Total Instructions:
FPOB.C

GETAFP
OBJCRE
OBJDAT
WHATDA
STORDA
CORYOA
ACTPP

PASORBY

>
GNHHHO’R"_‘U‘

Total Instructions:
GTPFPA
GETPFP
GETPPR
FREEFP
FREEGS
TRUENU

YN W N NN

Total Instructions:

KMIT.C 5
STORPC l
POLRCV 4
SETPOL 1
PORVLN 10
STOPCU 1
PRCSIC 1

Total Instructions:

CHKLST 305
NGETCO 72
NRETCO 15

52

22

23

392




Page number
110264
110452
115414
116106

Page number
100000
103366

Page number
100000
104504
105502
107270
112776

Page number
100002
101406
102234
102524
105452
106062
107530
111220
112116
117020
117400

Page number
103452
105144
107356
107636
111574
113162
114246
115236

Page number
100000
100042
100072
100742

13

22

23

24

25

26

Total Instructions: 5

HASH 2

HTLINK |

INCFPA 1

SUBDPS 1

Tolal Instructions: 309

I0TN.C 293

TRCKMP 16

Total Instructions: 781

MKRN.C 722

POLCY 1

RCVPOL 2

RSTREG 2

SKRN.C 54

Total Instructions: 841

NXTLOC 2

COMPAR 1

GETDAT 1

PUTDAT i

STORE 2 :
{.0AD 9 .
DELETE 7 N
CWLK.C 199

VAWALK 291

PSEM 215

VSEM 113

Total lnstructions: 35 i

START 2 !
PSHCON 1 1
LNS.C 1
MERGE 2
SETUPL 22
DOCALL 1
KRETUR 3
TCALL 3

Total Instruclions: 93

10TKC 3
MAPHT 2
UNKAPH 6
GETB 1

-




104036
104172
104320
104442
104736
107104
i10126
110126
110634
111650
116304

Page number
100000
104220
104710
105336

Page number
100000
100034
102174
103426
104320
104546
105122
105506
106110
107630
107766
112276
112416
113342
113700
114272
114700

Page number
100152
104320
112076
112374
112674
113172
113472
113772
115400

30

31

34

157

ENQBEF 3
DEQ 14
QAPPEN 7
COAPPE 2
QREMOV 14
IOSEND 1
DOIO 9
RGLTOP 2
RGETBU 17
RGETIN 4
PRPRF 1 8
Total Instructions:
IORP.C 337
PRPRP1 2
UPRPLI 95
IORP.P 298
Total Instructions:
FEND.O - 1
FEERCT 66
FEND.C 54
FEOIR 86
FEDISC . 6
FEDOWN 2
FEUP i0
ASAILC 1
PRASA 1
UPASA 1
ASAIO 13
INTWINM 1
STIMP 70
PRPIMP 2
UPIMP 2
GENIPI 26
FASTSE 1
Tolal Instructions:
MSRV.C 46
PACC.C 20
MCREAT I
MREA.C 20
MREAD 1
MWRI.C 16
MWRITE 1
MSND.C 8
MRSVP i

732

343

114




Page number 35
102366
103140
. 104276
105730
112310

- Page number an
100000
100034
100144
100542
100726
101152
101306
101376
101446
101470
101524
102234
102642
103174
103550
103662
104024
105244
105414
106564
106722
107254
110150
110504
111460
112714
113626
114136
115206
116270
116362
116454
116714
116762
117034

Page number 45
140000

158

Total Instructions:

MRPY.C
MREPLY
MRCV.C
MWAIT

VPOLSE

— ) N = -

Total Instructions:

KMPS.C
DELINK
ENQ
FNDPRC
REQFRO
HIGHF]
GCTSPA
FREESP
PRIWIN
ADRDTIM
SUBTIM
INIWAT
SWCXT
SWAPTO
SELCTE
SELCTS
IPSCHE
RETHIN
INITSE
SEND
RECEIV
CLOCK
KMPA.C
SENDST
STARTP
KSTOPC
RESCHE
TIMSCH
DELPRE
PRSTRT
PROCLP
PRSEM

- PRPX

PRVX
PRCPX

149
257
1021
144
98l
337

1

2
74
76
8l

. 700

249
340
1009
275

271

121

623
1

Total Instructions:
TRPS.0

6

13

7084

6
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Page number 46 Tolal Instruclions: 267

145000 LSUS.C 154
145222 MCLOCK 5
145264 IPCLOC 7
145300 MSCHED 14
145352 PIA 32
145444 MIOT 55

Page number 47 Total Instructions: 2166

153000 LMID.C 116 !
153176 DRTI.C 5 |
154160 MULD.C 18
154550 SAVR.C 513
154564 SSAV3 273
154602 8SAVA 191
154622 $SAVS 1156 :
154770 SiIX12 78 |
155162 XSIX12 81 |

Routine names in the order of decreasing samples:
This list is not normalized according to size of the roulines so larger routines may
contain more samples even though they are not execuled very often. Only routines

with more than 10 instruction samples are listed. Information presented here can be

used to decide which routines should be moved to the common code page ( accesses
via RRS) and which can be put in the overlay pages wilhout excessive cost.

Routines in the common code page are marked with
Routines in the local memory are marked with L

i Page num Address Rouline ( size )Number of samples
i 47 154622 L $SAVS ( 28) 1156
¥ 44 100144 ENQ ( 254) 1021
! 44 103550 SELCTE = ( 74) 1009
% 44 100726 REQFRO ( 148) 981
23 100000 MKRN.C (2132) 722
44 102234 INIWAT ( 262) 700
44 105414 INITSE ( 450) 623
6 125654 « ITEM2M  ( 116) 582
47 154550 L SAVR.C ( 12) 548
6 133034 = UNLOCK ( 42) 388
6 120252 * SLINK ( 18) 363




130122 ¢ FPRT]
103174 SWAPTO
101152  HIGHF]
100000 10RP.C
132502 % LOCK
101126 CHKLST
105336 IORP.P
100000 JOTNG
112116  VAWALK
103662 SELCTS
154564 L §5AV3
104024  IPSCHE
100034  DELINK
124160 + DPART2
102642 SWCXT
133136 * PRCSID
117020 PSEM
111220 CWLKC
154602 L $5AV4
134154 s SENABL
132612 # IPI7
145000 L LSUS.C
100000 KMPS.C
133356 + DNCRIT
100542 FNDPRC
105244 RETHIN
116454 PRSEM
153000 L LMID.C
117400 VSEM
124270 * DPART}
104710 UPRP11
103426 FEOJR
155462 L XSIX12
101524  SUBTIM
127332 * SEMOBJ
154770 L SIX12
101470 ADDTIM
101446  PRIWIN
102420 NGETCO
123126 * FYMUT
112816 STIMP
133552 * VMUTEX
100034 FEERCT
133724 + V
122250 + OBJDEL
107254 CLOCK
122156 * OBJSHR
133342 # INCRIT
116714 PRPX
145444 L MIOT
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( 78
( 170)
(  16)
(2006)
( 72
( 698)
(5409)
( 482)
( 120)
( 98
( 14
( 572)
( 30}
« 72)
( 218)
( 132)
( 154)
( 446)
( 16)
( 34)
( 122)
( 146)
( 28
( 32
( 116)
( 10%)
( 160)
( 126)
( 83)
( 82)
( 278)
( 442)
( 86)
( 328)
( 32)
( 2649)
( 28)
( 18)
( 686)
( 7%
( 468)
( 56)
(1120)
( 38
( 96)
( 332)
( 58)
( 12)
( 38)
( 60)

362
310
337
337
315
305
298
293
291
275
273
271
257
253
219
218
215
199
191
184
178
164
149
146
144
121
120
116
113
101
95
86
8l
8l

78
76
74
72
72
70
69
66
66
65
61
60
59
58
55




117034  PRCPX
102174 FEND.C
112776 SKRNC
100152 MSRV.C
134736 * CHKADR
123026 + FCMUT
133642 + P
116762 PRVX
133460 * CONDPM
124564 + DATA2M
145352 L 1P14
133670 + COMDP
121030 + MOVER
114272 GENIPI
131212 # SHARIT
111574 SETUPL
101066 OBJCRE
111460 STARTP
112374 MREAC
104320 PACC.C
126724 + ITCMC
154160 L MULD.C
110634 RGETBU
125306 * XITEM2
113172 MWRIC
103366 TRCKMP
103676 NRETCO
145300 L MSCHED
104736 QREMOV
104172 DEQ
131470 = DLTITM
107766 ASAIO
112220 PASOBRJ
105122  FEUP
112772 PORVLN
126370 * ITEMLE
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666)
78)

(1934)
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(
(
(
(
(
(
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62)
32)
22)
42)
58)
156)
58)
28)
26)
208)
174)
758)
614)
663)
192)
266)
70)
164)
524)
162)
192)
230)
716)
42)
82)
86)
112)

(1224)
(1516)
(
(
(

204)
182)
118)

55
54
54
46
43
42
39
38
33
33
32
32
27
26
25
22
22
20
20
20
20
18
17
17
16
16
15
14
14
14
14
13
13
10
10
10
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Appendix E: RSX11-M Major Processing Functions Trace

In this appendix we present a short ;ampln from the trace obtained for our study of
RSX11-M. Nt is intended fo give the reader an idea of how a hardware monitor can be
used to gather a comprehensive trace of the activilies happening inside an operating
system. It should be noled that this trace was obtained while executing a simple
command typed at a terminal. It is very interesting to find that such a lot of activity

goes on in the operating system even to process a simple request from a {erminal.

Event trace for RSX11M:

Time since  Processor cycles Description of the event
the beginning  since
(microsec)  the beginning

4088913 121926 - Begin TTY input interrupt

4089247 122148 End interrupt service

4089538 122181 Begin TTY oulput interrupt

4089765 122332 End interrupt service

4126177 123135 Begin TTY output interrupt

4126341 123246 Begin Sfork

4126371 123269 End interrupt service

4126457 123327 Begin TTY interrupt fork

4127068 123745 Begin TTY driver oulput

43127107 123769 End TTY output initiation

4127153 123800 Honor reschedule request

4127192 123825 Begin context switch

4127272 123881 »>>>>>> Contex! swilch to: LOADER

4127534 124058 End context switch

4127392 124303 Begin EMT processing

4128133 124464 888988 EMT code: 1 QUEUE 1/0

4128208 124513 Begin QIO processing

4128940 124989 Begin RPOA driver iniliation

4129792 125551 ste232 Read on unit 0, word count = 2048,
cylinder movement of 3

4129797 125555 End RPOA driver processing

4129919 12563% Begin EMT processing

4130149 125789 $88583 EMT code: 41 Wait for single event flag

4130371 125925 Honor reschedule request

4130623 126021 Begin context switch

4130768 126077 >>>>>> Context switch to: LV4

4131144 126254 End context switch

4136291 126319 Begin RPOA interrupt processing

od




4136326
4136357
4136443
4136329
41363837
4136880
4136922
4136990
4137070
4137332
4139096
4139135
4139157
4139420
4140080
4140309
4140384
4145197
4142166

4142172
4142426
4142656
4142865
4143010
4143090
4143360

1263415
126368
126426
126679
126685
126709
126740
126786
126842
127019
128193
128218
128233
128410
128346
129000
129049
129578
130220

130224
130393
130547
130686
130782
130833
131015

163

Begin Sfork

End interrupt service

Begin RPOA {ork processing

RP0OA request task reschedule

Begin RPO4 driver initiation

End RPOA driver processing

Honor reschedule request

Begin contexl swilch

>>>>>> Context swilch to: LOADER

[nd contewt switch

Honor reschedule request

Begin context switch

>>>>>> Contex! swilch to: Monitor Control Routine
End context switch

Begin EMT processing

£85588 EMT code: 1 QUEUE 1O

Begin QIO processing

Begin RFOA driver iniliation

+x£453 Read on unit 0, word count = 932,
cylinder movement of 0

End RPOA driver processing

Begin EMT processing

§89858 EMT code: 4] Wait for single event flag
Honor reschedule request

Begin context switch

>>>>>> Context switch to: LV4

End context switch
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Appendix F: The Device Utilization Experiment

This appendi)f presents the oulput of our device activily analysis pfogram. The
hardware monitor was used to monitor all the *wrile’s into any of the device registers
on the PDP-11 Unibus. Even though only two units of a device were active during the
data collaction, the program is capable of analysing the activilies of all the units of all
the devices present on the host syslem, Since PDP-11 architecture does not employ
channels for 1/0, there is no direct analogue for the quantity ‘CPU and Channel Busy’
which is a very popular measure of component overlap in other systems. We have
defined another measure for POP-11% which can be us_ed to delermine the overiap
between 1/0 aclivity and processor aclivily. We count the number of cycles initiated
by the processor from the lime a disk is given an I/O command (‘GO’ bil is set in the
controller) until the completion interrupt is received from the device.

It should be noted that due to limitations in the oulput bandwidth of K.mon, we could
not get a continuous trace of device activily. Some small discrepancies are therefore
present in the data reported here c.g.for unit 1 of the disk the number of write check
transfers is larger than the number of write transfers. This probably arises because a
write operation was missed while the hardware monitor was recovering from an

overflow but the following write check operation was successfully traced.
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Total cycles on the unibus: 4890778

Total processor cycles @ 4351877

Total device cycles in actual transfers: 427176
Overlapped cycles between CPU and RP1]: 431103

ﬁ Total lime of measurement : 46630.576 millisec

DISK ACTIVITY DISTRIBUTION FOR RP11
Total number of transfers = 148

Unit number

8 1 2
Disk Reads.....
54272 98112 B
Disk Writes....
438 142568 %]

Diﬁk u.‘ite ChBCks.... .
4880 143360 2

-
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Disk arm movement histogram

OF SAMPLES 86

MINIMUN

RANGE

inf

(
(
(
{
(
(
(
{
(
{ 45
(
(
(
(
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(
(
(
{

MEAN  43.744

1 MAXINUM 381

a]
19

15)

201
25}
28]
351
49)
45]
501
551
68]
65]
70
75)
803
abl
apl
951

'100]

185])
1101
118]
1283
125]
1301
1361
148)
145]
158}
155])
1601
165)
174}
179)
188
186]
190}
135])
200]

OO OISO~ RVNI-D=NBIINLWSO-GT &

COUNT

. N
SN ®
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ST0 DEV. 61.442
Total 4278
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(208 10 20%]
(205 10 2101
(218 T0 215)
(21% 10 220)
228 10 225]
(225 T0 2391
(238 10 2351
(235 10 2481
268 T0O 245)
{245 10 258)
(250 10 255]
255 10 2681
(268 10 2651
(265 10 2781
(278 10 2751
(275 10 28081
{228 TO 225]
(285 10 2901
(298 10 296]
(2395 10 200
(388 70 305]
(385 10 31@
(312 TD 3151
(315 TO 320]
(328 T0 325)
(325 10 3301 -
(338 10 335]
(335 70 34081
(348 TQ 345)
(345 TO 358]
(350 TQ 3553 )
(355 TO 36%]
(368 10 3653
(365 TO 3781
(370 10 3753
(375 70 3884
(338 10 3851
(385 T0 3301
(330 T0 3351
(335 TO0 480]
(488 TO +inf
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Disk transfer time histogram ( milli sec)

OF SAMPLES 148

MINIMUN
RANGE

inf 10
g 10
2 10
4 10
6 T0
& 10

18 10
12 10
14 TO
16 T0
18 T0

28 10

22 .10
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(
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MEAN 43,300 S70 OEv. 18.103

2 MAXINUM G5

19)]
2)
4]
Sy
8]
101
12]
141
161
18]
20
22]
241
261

2381 .

301
321
341
361
381
491
42)
44]
46]
48}
501
52]
54]
561
681
514}
62]
64]
661
8]
781
72]
74]
761
78]
891

SR I g, - i

COUNT
4

S/ WUONRRWNNDAENWOE

SO TIECAONOOUNNCIRNO NN CG UT
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Disk word count histogram

OF SAMPLES 148 MEAN 3051.257 STO DEV,  1688,252
MININUN 256 MAXINUM 4896 Total 427176

RANGE COUNT

-inf 70 9)

( 8 T0 256]

(256 10 5121

(512 10 768}

(768 T0 1024}

(1924 70 12281}
(1288 TO 15386)
(1536 10 1792)
(1792 TO 2048)
(ZB48 TO 2384)
(2304 10 25681
(2568 T0 28161
(2216 T0 3972)
(3872 T0 3328]
(3328 10 3584]
(3584 TD 38349
(3849 TO 40961
(4036 TO +inf 10
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